Na	me
Ph	ysics 111 Quiz #2, September 24, 2021
	ease show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is orth 10 points total.
	I affirm that I have carried out my academic endeavors with full academic honesty.
1.	Suppose that you the collection of point charges shown below with $ q = 1.6 \times 10^{-19} C$. The charges are located on the corners of a square with sides of length $l = 1 \mu m$. What are the net horizontal and net vertical electric field components at the center of the square?
	+q
2.	What is the magnitude and direction of the net electric field at the center of the square.

3. Suppose that a uniform electric field exists as shown below and consider two points A and B, where the distance between the points is 2m. If a proton is released from rest at point A and has acquired a speed of $6 \times 10^{5} \frac{m}{s}$ at point B, what is the magnitude of the uniform electric field?

4. Suppose that an electron was released from rest at a point halfway between points A and B. Explain fully which direction the electron will move in the field and why you think it will move in that direction. That is, will the election move towards point A, towards point B, or towards some other location? If it moves toward some location other than points A or B, be sure to say where this point is.

5. This question does not relate to any of the above questions. Through what potential difference, ΔV would you have to accelerate an electron so that it had a speed of $1 \times 10^{7} \frac{m}{s}$, if the electron started from rest?

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$\vec{F} = k \frac{Q_1 Q_2}{r^2} \hat{r}$$

$$\vec{E} = \frac{\vec{F}}{q}$$

$$\vec{E}_Q = k \frac{Q}{r^2} \hat{r}$$

$$PE = k \frac{Q_1 Q_2}{r}$$

$$V(r) = k \frac{Q}{r}$$

$$E_x = -\frac{\Delta V}{\Delta x}$$

$$W = -q \Delta V_{f,i}$$

Magnetic Forces and Fields

$$F = qvB \sin \theta$$

$$F = IIB \sin \theta$$

$$\tau = NIAB \sin \theta = \mu B \sin \theta$$

$$PE = -\mu B \cos \theta$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$\varepsilon_{induced} = -N \frac{\Delta \phi_B}{\Delta t} = -N \frac{\Delta (BA \cos \theta)}{\Delta t}$$

Constants

$$g = 9.8 \frac{m}{2}$$

$$1e = 1.6 \times 10^{-19} C$$

$$k = \frac{1}{4\pi\varepsilon_o} = 9 \times 10^9 \, \frac{c^2}{Nm^2}$$

$$\varepsilon_{o} = 8.85 \times 10^{-12} \frac{Nm^{2}}{C^{2}}$$

$$1eV = 1.6 \times 10^{-19} J$$

$$\mu_o = 4\pi \times 10^{-7} \, \frac{Tm}{A}$$

$$c = 3 \times 10^8 \, \frac{m}{c}$$

$$h = 6.63 \times 10^{-34} \, Js$$

$$m_e = 9.11 \times 10^{-31} kg = \frac{0.511 MeV}{c^2}$$

$$m_p = 1.67 \times 10^{-27} kg = \frac{937.1 MeV}{c^2}$$

$$m_n = 1.69 \times 10^{-27} \, kg = \frac{948.3 MeV}{c^2}$$

$$1amu = 1.66 \times 10^{-27} kg = \frac{931.5 MeV}{r^2}$$

$$N_A = 6.02 \times 10^{23}$$

$$Ax^2 + Bx + C = 0 \rightarrow x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Electric Circuits

$$\begin{split} I &= \frac{\Delta Q}{\Delta t} \\ V &= IR = I \left(\frac{\rho L}{A} \right) \\ R_{series} &= \sum_{i=1}^{N} R_{i} \\ \frac{1}{R_{parallel}} &= \sum_{i=1}^{N} \frac{1}{R_{i}} \\ P &= IV = I^{2}R = \frac{V^{2}}{R} \\ Q &= CV = \left(\frac{\kappa \varepsilon_{0} A}{d} \right) V = (\kappa C_{0}) V \\ PE &= \frac{1}{2} QV = \frac{1}{2} CV^{2} = \frac{Q^{2}}{2C} \\ Q_{\text{charge}}(t) &= Q_{\text{max}} \left(1 - e^{-\frac{t}{RC}} \right) \\ Q_{\text{discharge}}(t) &= Q_{\text{max}} e^{-\frac{t}{RC}} \\ C_{parallel} &= \sum_{i=1}^{N} C_{i} \\ \frac{1}{C_{veries}} &= \sum_{i=1}^{N} \frac{1}{C_{i}} \end{split}$$

Light as a Wave

$$c = f = \frac{1}{\sqrt{e_o m_o}}$$

$$S(t) = \frac{energy}{time ' area} = ce_o E^2(t) = c \frac{B^2(t)}{m_0}$$

$$I = S_{avg} = \frac{1}{2} ce_o E_{max}^2 = c \frac{B_{max}^2}{2m_0}$$

$$P = \frac{S}{c} = \frac{Force}{Area}$$

$$S = S_o \cos^2 q$$

$$v = \frac{1}{\sqrt{em}} = \frac{c}{n}$$

$$q_{inc} = q_{refl}$$

$$n_1 \sin q_1 = n_2 \sin q_2$$

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

$$M = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

$$M_{total} = O_{i=1}^{N} M_i$$

$$S_{out} = S_{in} e^{-\frac{A}{m_i} m_i x_i}$$

$$HU = \frac{m_w - m_m}{m_w}$$

Light as a Particle & Relativity

$$E = hf = \frac{hc}{\lambda} = pc$$

$$KE_{\text{max}} = hf - \phi = eV_{\text{stop}}$$

$$\Delta \lambda = \frac{h}{m_e c} (1 - \cos \phi)$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$p = \gamma mv$$

$$E_{\text{total}} = KE + E_{\text{rest}} = \gamma mc^2$$

$$E_{\text{total}}^2 = p^2 c^2 + m^2 c^4$$

Nuclear Physics

$$E_{binding} = (Zm_p + Nm_n - m_{rest})c^2$$

$$\frac{\Delta N}{\Delta t} = -\lambda N_o \to N(t) = N_o e^{-\lambda t}$$

$$A(t) = A_o e^{-\lambda t}$$

$$m(t) = m_o e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

Geometry

$$G \ rcl \ es \ C = 2\pi r = \pi D$$
 $A = \pi r^2$
 $Tri \ angl \ es \ A = \frac{1}{2}bh$
 $Spheres: \ A = 4\pi r^2$
 $V = \frac{4}{3}\pi r^3$

 $E_{rest} = mc^2$

 $KE = (\gamma - 1)mc^2$

Misc. Physics 110 Formulae

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{\Delta (mv)}{\Delta t} = m\vec{a}$$

$$\vec{F} = -k\vec{y}$$

$$\vec{F}_C = m\frac{v^2}{R}\hat{r}$$

$$W = \Delta KE = \frac{1}{2}m(v_f^2 - v_i^2) = -\Delta PE$$

$$PE_{gravity} = mgy$$

$$PE_{spring} = \frac{1}{2}ky^2$$

$$|\vec{A}| = \sqrt{A_x^2 + A_y^2}$$

$$\phi = \tan^{-1}\left(\frac{A_y}{A_x}\right)$$

$$\vec{v}_f = \vec{v}_i + \vec{a}t$$

$$v_f^2 = v_i^2 + 2a\Delta x$$

$$\vec{x}_f = \vec{x}_i + \vec{v}_f t + \frac{1}{2}\vec{a}t^2$$