Name	
Ph	ysics 111 Quiz #3, October 1, 2021
	ease show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is orth 10 points total.
	I affirm that I have carried out my academic endeavors with full academic honesty.
1.	A capacitor is constructed out of two circular metal plates with a $50cm$ diameter and a dielectric made from rubber ($\kappa = 6.7$) is inserted between the plates. The initially uncharged capacitor is connected to a 10000Ω resistor and allowed to charge? I the time constant of the circuit is needed to be $\tau = 38s$, what would be the capacitance of the capacitor that was used?
2	In order to achieve the conscitones in question 1, what would the compaction between the plates have
2.	In order to achieve the capacitance in question 1, what would the separation between the plates have to be?

3.	How much energy was stored in the capacitor when it is fully charged if the capacitor was charged by a $100V$ battery?
4.	When fully charged by the $100V$ battery, how much charge was stored?
5.	This capacitor is charged through the resistor. At what time will the potential difference across the resistor equal the potential difference across the capacitor?

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$\vec{F} = k \frac{Q_1 Q_2}{r^2} \hat{r}$$

$$\vec{E} = \frac{\vec{F}}{q}$$

$$\vec{E}_Q = k \frac{Q}{r^2} \hat{r}$$

$$PE = k \frac{Q_1 Q_2}{r}$$

$$V(r) = k \frac{Q}{r}$$

$$E_x = -\frac{\Delta V}{\Delta x}$$

$$W = -q \Delta V_{fi}$$

Magnetic Forces and Fields

$$F = qvB\sin\theta$$

$$F = IlB\sin\theta$$

$$\tau = NIAB\sin\theta = \mu B\sin\theta$$

$$PE = -\mu B\cos\theta$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$\varepsilon_{induced} = -N \frac{\Delta \phi_{\scriptscriptstyle B}}{\Delta t} = -N \frac{\Delta \big(BA \cos \theta\big)}{\Delta t}$$

Constants

$$g = 9.8 \frac{m}{s^2}$$

$$1e = 1.6 \times 10^{-19} C$$

$$k = \frac{1}{4\pi\varepsilon_o} = 9 \times 10^9 \, \frac{c^2}{Nm^2}$$

$$\varepsilon_o = 8.85 \times 10^{-12} \frac{Nm^2}{C^2}$$

$$1eV = 1.6 \times 10^{-19} J$$

$$\mu_o = 4\pi \times 10^{-7} \, \frac{Tm}{A}$$

$$c = 3 \times 10^8 \frac{m}{s}$$

$$h = 6.63 \times 10^{-34} Js$$

$$m_e = 9.11 \times 10^{-31} kg = \frac{0.511 MeV}{c^2}$$

$$m_p = 1.67 \times 10^{-27} kg = \frac{937.1 MeV}{c^2}$$

$$m_n = 1.69 \times 10^{-27} \, kg = \frac{948.3 MeV}{c^2}$$

$$1amu = 1.66 \times 10^{-27} \, kg = \frac{931.5 MeV}{c^2}$$

$$N_A = 6.02 \times 10^{23}$$

$$Ax^{2} + Bx + C = 0 \rightarrow x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

Electric Circuits

$$I = \frac{\Delta Q}{\Delta t}$$

$$V = IR = I \left(\frac{\rho L}{A}\right)$$

$$R_{series} = \sum_{i=1}^{N} R_{i}$$

$$\frac{1}{R_{parallel}} = \sum_{i=1}^{N} \frac{1}{R_{i}}$$

$$P = IV = I^{2}R = \frac{V^{2}}{R}$$

$$Q = CV = \left(\frac{\kappa \varepsilon_{0} A}{d}\right)V = (\kappa C_{0})V$$

$$PE = \frac{1}{2}QV = \frac{1}{2}CV^{2} = \frac{Q^{2}}{2C}$$

$$Q_{charge}(t) = Q_{max}\left(1 - e^{-\frac{t}{RC}}\right)$$

$$Q_{discharge}(t) = Q_{max}e^{-\frac{t}{RC}}$$

$$C_{parallel} = \sum_{i=1}^{N} C_{i}$$

$$\frac{1}{C_{series}} = \sum_{i=1}^{N} \frac{1}{C_{i}}$$

Light as a Wave

$$c = f / = \frac{1}{\sqrt{e_o m_o}}$$

$$S(t) = \frac{energy}{time ' area} = ce_o E^2(t) = c \frac{B^2(t)}{m_0}$$

$$I = S_{avg} = \frac{1}{2} ce_o E_{max}^2 = c \frac{B_{max}^2}{2m_0}$$

$$P = \frac{S}{c} = \frac{Force}{Area}$$

$$S = S_o \cos^2 q$$

$$v = \frac{1}{\sqrt{em}} = \frac{c}{n}$$

$$q_{inc} = q_{refl}$$

$$n_1 \sin q_1 = n_2 \sin q_2$$

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

$$M = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

$$M_{total} = \bigcup_{i=1}^{N} M_i$$

$$S_{out} = S_{in} e^{-\frac{a}{m_i} m_{in}}$$

$$HU = \frac{m_w - m_m}{m_w}$$

Light as a Particle & Relativity

$$E = hf = \frac{hc}{\lambda} = pc$$

$$KE_{\text{max}} = hf - \phi = eV_{\text{stop}}$$

$$\Delta \lambda = \frac{h}{m_e c} (1 - \cos \phi)$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$p = \gamma mv$$

$$E_{\text{total}} = KE + E_{\text{rest}} = \gamma mc^2$$

$$E_{\text{total}}^2 = p^2 c^2 + m^2 c^4$$

$$E_{\text{rest}} = mc^2$$

$$KE = (\gamma - 1)mc^2$$

Nuclear Physics

$$E_{binding} = \left(Zm_p + Nm_n - m_{rest}\right)c^2$$

$$\frac{\Delta N}{\Delta t} = -\lambda N_o \to N(t) = N_o e^{-\lambda t}$$

$$A(t) = A_o e^{-\lambda t}$$

$$m(t) = m_o e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

Misc. Physics 110 Formulae

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{\Delta (mv)}{\Delta t} = m\vec{a}$$

$$\vec{F} = -k\vec{y}$$

$$\vec{F}_C = m\frac{v^2}{R}\hat{r}$$

$$W = \Delta KE = \frac{1}{2}m(v_f^2 - v_i^2) = -\Delta PE$$

$$PE_{gravity} = mgy$$

$$PE_{spring} = \frac{1}{2}ky^2$$

$$|\vec{A}| = \sqrt{A_x^2 + A_y^2}$$

$$\phi = \tan^{-1}\left(\frac{A_y}{A_x}\right)$$

$$\vec{v}_f = \vec{v}_i + \vec{a}t$$

$$v_f^2 = v_i^2 + 2a\Delta x$$

Geometry

 $Grcles C = 2\pi r = \pi D$ $A = \pi r^2$

Tri angles $A = \frac{1}{2}bh$

Spheres: $A = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$