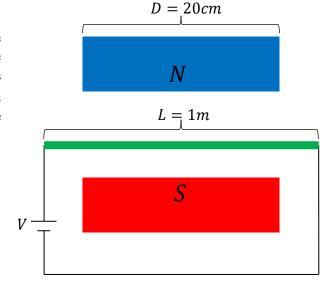
Name	

Physics 111 Quiz #4, October 7, 2024


Please show all work, thoughts and/or reasoning to receive partial credit. The quiz is worth 10 points total, and all parts may not be of equal weight.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. Suppose that you have a wire of radius $r=50\mu m$ and length L=1m that will be used in a circuit as a resistor. The wire is made out of tungsten $(\rho_{M,W}=19300\frac{kg}{m^3},M_W=0.1833\frac{kg}{mol},\rho=5.6\times10^{-8}\Omega m)$, which donates two charges carriers to the current, and is

connected to a V = 20V battery. How much current is produced by the battery?

2. Suppose that this wire was placed between the poles of a square magnet, shown below, with side length D = 20cm. The magnetic field has a strength $|\vec{B}| = B = 3mT$. When placed between the poles of the magnet, what force would the wire segment feel? Assume that $\vec{I} \perp \vec{B}$.

3.	What is the drift velocity of charge carriers in tungsten wire if the current in part 1 flows?
4.	What is the Hall voltage induced across the diameter of the wire?
5.	Although they cannot physically do this, assume that the charge carriers could make a circular orbit about the magnetic field in the wire. If the charge carriers have charge $q=+e$ and mass $m=m_e=9.11\times 10^{-31}kg$, what would be the radius of their circular orbit? Assume that $\vec{v}_d \propto \vec{l} \perp \vec{B}$.