Name

Physics 111 Quiz #5, November 13, 2015

Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Strontium-90 is chemically similar to calcium and if ingested can replace calcium in bones leading to health problems. ${}^{90}_{38}Sr$ is produced as a nuclear fission product of uranium and ${}^{90}_{38}Sr$ has too many neutrons to be stable and thus decays with a half-life of about 29yr.

1. How long would you have to wait for the amount of $\frac{90}{38}Sr$ on the Earth's surface to reach 1% of its current level, assuming no new material is scattered about?

From the half-life we calculate the decay constant:

$$\lambda = \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{\ln 2}{29 yr} = 0.024 yr^{-1}$$

Then the time to reach this amount is:

$$m = 0.01m_o = m_o e^{-\lambda t} \rightarrow t = -\frac{\ln(0.01)}{\lambda} = -\frac{\ln(0.01)}{0.024 \, yr^{-1}} = 192.7 \, yr$$

2. What is the decay reaction and what is the maximum kinetic energy available to the decay particle? (See table 1 on the back of the page for pertinent data.)

Too many neutrons mean that this is a beta-minus decay. We have: ${}^{90}_{38}Sr \rightarrow {}^{0}_{-1}e + {}^{90}_{39}Y + \overline{\nu}_{e}$

The maximum kinetic energy available to the beta particle is (assuming that the $\frac{90}{39}Y$ is at rest after the decay) and the electron's mass is included in the rest mass of Yittrium:

$$KE_{\max} = (m_{Sr} - m_{Y})c^{2}$$
$$KE_{\max} = \left[(89.90773u - 89.90585u) \times \left(\frac{931.5\frac{MeV}{c^{2}}}{1u}\right) \right]c^{2} = 1.75MeV$$

- 3. $\frac{90}{38}$ Sr has 38 protons in its nucleus. Why doesn't the strontium nucleus break apart?
 - a. The repulsive Coulomb force doesn't act inside of the nucleus.
 - b. The force of gravity overpowers the repulsive Coulomb force inside of the nucleus.
 - c. The negatively charged neutrons balance the positively charged protons.
 - d. Protons lose some of their positive charge inside the nucleus.
 - e. The strong nuclear force holds the nucleus together.

	GROUP		DE				Т۸	DI	E (тυ			скле		ГС		
			RIODIC TABLE OF THE ELEMENTS										18 VIIIA					
1 PERIOD	H RELATIVE ATOMIC MASS (1)				Me	http://www.periodni.com 2									2 4.0026 He			
PER	HYDROGEN 2 IIA GROUP IUPAC GROUP CAS				Alk	Alkali metal Chalcogens element					13 IIIA 14 IVA 15 VA 16 VIA 17 VIIA H							
	3 6.941	13					Alk	aline earth m	etal	Halogens element			5 10.811			8 15.999		10 20.180
2	Li Be SYMBOL B				_	Lanthanide			Noble gas			С	Ν	0	F	Ne		
	LITHIUM					Actinide			STANDARD STATE (25 °C; 101 kPa) Ne - gas Fe - solid			BORON	CARBON	NITROGEN OXYGEN	OXYGEN	FLUORINE	NEON	
	3 Na Mg						L				- liquid TC - synthetic			14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3								VIIIB -				Al	Si	Р	S	Cl	Ar	
	SODIUM 19 39.098	MAGNESIUM		4 IVB	5 VB	6 VIB 24 51.996	7 VIIB 25 54,938	8	9 27 58.933	10 28 58.693	11 IB 29 63.546	12 IIB 30 65.38	ALUMINIUM 31 69.723	SILICON 32 72.64	PHOSPHORUS	SULPHUR 34 78.96	CHLORINE 35 79,904	ARGON 36 83.798
4			Sc	Ti	23 50.942		Mn	Fe		28 50.093 Ni	Cu	Zn	Ga			Se	Br	Kr
-	K	Ca			v	Cr			Co					Ge	As	~		
	90TASSIUM 37 85.468	CALCIUM 38 87.62	39 88.906	40 91.224	41 92.906	42 95,96	MANGANESE	IRON 44 101.07	COBALT 45 102.91	NICKEL	COPPER 47 107.87	ZINC 48 112 41	GALLIUM 49 114.82	GERMANIUM	ARSENIC 51 121.76	SELENIUM	BROMINE 53 126.90	54 131.29
5	Rb	Sr	V	Zr	Nb	Mo	Te	Ru	Rh	Pd		Cd	In	Sn	Sb	Те	I	Xe
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM		MOLYBDENUM			RHODIUM	PALLADIUM	Ag	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
	55 132.91	56 137.33	57-71	72 178.49	\rightarrow	$\rightarrow \rightarrow \rightarrow$	\rightarrow	\rightarrow	\rightarrow	78 195.08	\rightarrow	\rightarrow	\rightarrow	<u> </u>	83 208.98	\rightarrow	85 (210)	86 (222)
6	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	CAESIUM	BARIUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
	87 (223)	88 (226)	89-103	104 (267)	105 (268)	106 (271)	107 (272)	108 (277)	109 (276)	110 (281)	111 (280)	112 (285)	113 ()	114 (287)	115 ()	116 (291)	117 ()	118 ()
7	Fr	Ra	Ac-Lr	Rſ	Db	Sg	IBh	IHIS	Mit	Ds	Rg	Cn	Uut	IF1	Uup	Lv	Uus	Uuo
	FRANCIUM	RADIUM	Actinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM	COPERNICIUM	UNUNTRIUM	FLEROVIUM	UNUNPENTIUM	LIVERMORIUM	UNUNSEPTIUM	UNUNOCTIUM
LANTHANIDE Copyright © 2012 Eni General													2 Eni Generalić					
									69 168.93	70 173.05	71 174.97							
Rela	Relative atomic masses are expressed with				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
five significant figures. For elements that have			La					CAMADUNA	FUDODUM	CADOLINIUM	TEDOUIN	DVCDDOCUM	HOLMUM	CODUM		VTTEDDUIN	LITETUNA	

 Three significant figures. For elements that have brackets indicates the mass number of the loggest-tived solution of the element movements (Th. Pa and U) do have a dramateristic terrestral isotopic composition, and for these an atomic weight is tabulated.
 CERUM
 PRASECOMMUM NEODYMUM PROMETHUM, SAMARHUM
 EUROPHUM
 GADOLINUM
 TERBIUM
 DYSPROSIUM
 HOLMUM
 ERBIUM
 THULIUM
 YTTERBIUM
 LITETHUM

 ACTINIDE
 89 (227)
 90 232.04
 91 231.04
 92 238.03
 93 (237)
 94 (244)
 95 (247)
 97 (247)
 98 (251)
 99 (252)
 100 (257)
 101 (258)
 102 (259)
 103 (262)

 Act
 Th
 Pa
 U
 Np
 PU
 AITH
 CITN
 IB/k
 Cif
 IE/s
 IFIN
 Mid
 No
 ILaF

http://www.chemizzle.com/p/chemistry.html

Element	$^{90}_{38}Sr$	$^{90}_{39}Y$	$^{87}_{37}Rb$	$^{94}_{40}$ Zr	$^{86}_{36}$ Kr	${}^{4}_{2}He$	${}^{0}_{-1}e {}^{0}_{\text{or} +1}e$
Mass (unified mass units)	89.90773	89.90585	86.90918	93.90632	86.91062	4.00260	0.00055

 $\mathbb{N}\mathbb{P}$

CURIUM

BERKELIUM

ALIFORNI

INSTEINIL

FERMIUM MENDELEVIUM NOBELIUM LAWRENCIUM

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$\vec{F} = k \frac{Q_1 Q_2}{r^2} \hat{r}$$
$$\vec{E} = \frac{\vec{F}}{q}$$
$$\vec{E}_Q = k \frac{Q}{r^2} \hat{r}$$
$$PE = k \frac{Q_1 Q_2}{r}$$
$$V(r) = k \frac{Q}{r}$$
$$E_x = -\frac{\Delta V}{\Delta x}$$
$$W = -q \Delta V_{fi}$$

Magnetic Forces and Fields

 $F = qvB\sin\theta$ $F = IlB\sin\theta$ $\tau = NIAB\sin\theta = \mu B\sin\theta$ $PE = -\mu B\cos\theta$ $B = \frac{\mu_0 I}{2\pi r}$

$$\mathcal{E}_{induced} = -N \frac{\Delta \phi_B}{\Delta t} = -N \frac{\Delta (BA \cos \theta)}{\Delta t}$$
Constants
 $g = 9.8 \frac{m}{s^2}$
 $le = 1.6 \times 10^{-19} C$
 $k = \frac{1}{4\pi\varepsilon_o} = 9 \times 10^9 \frac{C^2}{Nm^2}$
 $\varepsilon_o = 8.85 \times 10^{-12} \frac{Nm^2}{C^2}$
 $leV = 1.6 \times 10^{-19} J$
 $\mu_o = 4\pi \times 10^{-7} \frac{Tm}{A}$
 $c = 3 \times 10^8 \frac{m}{s}$
 $h = 6.63 \times 10^{-34} Js$
 $m_e = 9.11 \times 10^{-31} kg = \frac{0.511 MeV}{c^2}$
 $m_p = 1.67 \times 10^{-27} kg = \frac{937.1MeV}{c^2}$
 $lamu = 1.66 \times 10^{-27} kg = \frac{931.5MeV}{c^2}$
 $lamu = 1.66 \times 10^{-27} kg = \frac{931.5MeV}{c^2}$
 $N_A = 6.02 \times 10^{23}$
 $Ax^2 + Bx + C = 0 \rightarrow x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$

Electric Circuits

$$I = \frac{\Delta Q}{\Delta t}$$

$$V = IR = I \left(\frac{\rho L}{A}\right)$$

$$R_{series} = \sum_{i=1}^{N} R_i$$

$$\frac{1}{R_{parallel}} = \sum_{i=1}^{N} \frac{1}{R_i}$$

$$P = IV = I^2 R = \frac{V^2}{R}$$

$$Q = CV = \left(\frac{\kappa \varepsilon_0 A}{d}\right) V = (\kappa C_0) V$$

$$PE = \frac{1}{2} QV = \frac{1}{2} CV^2 = \frac{Q^2}{2C}$$

$$Q_{charge}(t) = Q_{max} \left(1 - e^{-\frac{t}{RC}}\right)$$

$$Q_{discharge}(t) = Q_{max} e^{-\frac{t}{RC}}$$

$$C_{parallel} = \sum_{i=1}^{N} C_i$$

$$\frac{1}{C_{series}} = \sum_{i=1}^{N} \frac{1}{C_i}$$

Light as a Particle & Relativity Nuclear Physics

$$E = hf = \frac{hc}{\lambda} = pc$$

$$KE_{\max} = hf - \phi = eV_{stop}$$

$$\Delta \lambda = \frac{h}{m_e c} (1 - \cos \phi)$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$p = \gamma mv$$

$$E_{total} = KE + E_{rest} = \gamma mc^2$$

$$E_{total}^2 = p^2 c^2 + m^2 c^4$$

$$E_{rest} = mc^2$$

$$KE = (\gamma - 1)mc^2$$

Geometry

Circles: $C = 2\pi r = \pi D$ $A = \pi r^2$ *Triangles* : $A = \frac{1}{2}bh$ *Spheres*: $A = 4\pi r^{2}$ $V = \frac{4}{3}\pi r^{3}$

Light as a Wave

$$c = f\lambda = \frac{1}{\sqrt{\varepsilon_o \mu_o}}$$

$$S(t) = \frac{energy}{time \times area} = c\varepsilon_o E^2(t) = c\frac{B^2(t)}{\mu_0}$$

$$I = S_{avg} = \frac{1}{2}c\varepsilon_o E_{max}^2 = c\frac{B_{max}^2}{2\mu_0}$$

$$P = \frac{S}{c} = \frac{Force}{Area}$$

$$S = S_o \cos^2 \theta$$

$$v = \frac{1}{\sqrt{\varepsilon\mu}} = \frac{c}{n}$$

$$\theta_{inc} = \theta_{refl}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

$$M = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

$$M_{total} = \prod_{i=1}^{N} M_i$$

$$S_{out} = S_{in} e^{-\sum_i \mu_i x_i}$$

$$HU = \frac{\mu_w - \mu_m}{\mu_w}$$

$$E_{binding} = (Zm_p + Nm_n - m_{rest})c^2$$
$$\frac{\Delta N}{\Delta t} = -\lambda N_o \rightarrow N(t) = N_o e^{-\lambda t}$$
$$A(t) = A_o e^{-\lambda t}$$
$$m(t) = m_o e^{-\lambda t}$$
$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

Misc. Physics 110 Formulae

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{\Delta(mv)}{\Delta t} = m\vec{a}$$

$$\vec{F} = -k\vec{y}$$

$$\vec{F}_{c} = m\frac{v^{2}}{R}\hat{r}$$

$$W = \Delta KE = \frac{1}{2}m(v_{f}^{2} - v_{i}^{2}) = -\Delta PE$$

$$PE_{gravity} = mgy$$

$$PE_{spring} = \frac{1}{2}ky^{2}$$

$$|\vec{A}| = \sqrt{A_{x}^{2} + A_{y}^{2}}$$

$$\phi = \tan^{-1}\left(\frac{A_{y}}{A_{x}}\right)$$

$$\vec{v}_{f} = \vec{v}_{i} + \vec{a}t$$

$$v_{f}^{2} = v_{i}^{2} + 2a\Delta x$$

$$\vec{x}_{\cdot} = \vec{x} + \vec{v}t + \frac{1}{2}\vec{a}t^{2}$$