Name \qquad
Physics 111 Quiz \#5, November 13, 2015
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Strontium-90 is chemically similar to calcium and if ingested can replace calcium in bones leading to health problems. ${ }_{38}^{90} \mathrm{Sr}$ is produced as a nuclear fission product of uranium and ${ }_{38}^{90} \mathrm{Sr}$ has too many neutrons to be stable and thus decays with a half-life of about 29 yr .

1. How long would you have to wait for the amount of ${ }_{38}^{90} \mathrm{Sr}$ on the Earth's surface to reach 1% of its current level, assuming no new material is scattered about?

From the half-life we calculate the decay constant:

$$
\lambda=\frac{\ln 2}{t_{1 / 2}}=\frac{\ln 2}{29 y r}=0.024 y r^{-1}
$$

Then the time to reach this amount is:

$$
m=0.01 m_{o}=m_{o} e^{-\lambda t} \rightarrow t=-\frac{\ln (0.01)}{\lambda}=-\frac{\ln (0.01)}{0.024 y r^{-1}}=192.7 y r
$$

2. What is the decay reaction and what is the maximum kinetic energy available to the decay particle? (See table 1 on the back of the page for pertinent data.)

Too many neutrons mean that this is a beta-minus decay. We have: ${ }_{38}^{90} \mathrm{Sr} \rightarrow{ }_{-1}^{0} e+{ }_{39}^{90} Y+\bar{v}_{e}$
The maximum kinetic energy available to the beta particle is (assuming that the ${ }_{39}^{90} Y$ is at rest after the decay) and the electron's mass is included in the rest mass of Yittrium:

$$
\begin{aligned}
& K E_{\max }=\left(m_{S r}-m_{Y}\right) c^{2} \\
& K E_{\max }=\left[(89.90773 u-89.90585 u) \times\left(\frac{931.5 \frac{\mathrm{MeV}}{c^{2}}}{1 u}\right)\right] c^{2}=1.75 \mathrm{MeV}
\end{aligned}
$$

3. ${ }_{38}^{90} \mathrm{Sr}$ has 38 protons in its nucleus. Why doesn't the strontium nucleus break apart?
a. The repulsive Coulomb force doesn't act inside of the nucleus.
b. The force of gravity overpowers the repulsive Coulomb force inside of the nucleus.
c. The negatively charged neutrons balance the positively charged protons.
d. Protons lose some of their positive charge inside the nucleus.
e. The strong nuclear force holds the nucleus together.

http://www.chemizzle.com/p/chemistry.html

Element	${ }_{38}^{90} \mathrm{Sr}$	${ }_{39}^{90} \mathrm{Y}$	${ }_{37}^{87} \mathrm{Rb}$	${ }_{40}^{94} \mathrm{Zr}$	${ }_{36}^{86} \mathrm{Kr}$	${ }_{2}^{4} \mathrm{He}$	${ }_{-1}^{0} e{ }_{\text {or }+1}^{0} e$ Mass (unified mass units) 89.90773

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W=-q \Delta V_{f, i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Magnetic Forces and Fields } \\
& \begin{array}{l}
F=q v B \sin \theta \\
F=I l B \sin \theta \\
\tau=N I A B \sin \theta=\mu B \sin \theta \\
P E=-\mu B \cos \theta \\
B=\frac{\mu_{0} I}{2 \pi r} \\
\varepsilon_{\text {induced }}=-N \frac{\Delta \phi_{B}}{\Delta t}=-N \frac{\Delta(B A \cos \theta)}{\Delta t}
\end{array}
\end{aligned}
$$

Constants

$$
g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
1 e=1.6 \times 10^{-19} \mathrm{C}
$$

$$
k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm}}
$$

$$
\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{Nm})^{2}}{\mathrm{C}^{2}}
$$

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

$$
\mu_{o}=4 \pi \times 10^{-7} \frac{T_{m}}{A}
$$

$$
c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
h=6.63 \times 10^{-34} J s
$$

$$
m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}
$$

$$
m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}
$$

$$
m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}
$$

$$
1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{c^{2}}
$$

$$
N_{A}=6.02 \times 10^{23}
$$

$$
A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

Electric Circuits

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t} \\
& V=I R=I\left(\frac{\rho L}{A}\right) \\
& R_{\text {series }}=\sum_{i=1}^{N} R_{i} \\
& \frac{1}{R_{\text {parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& Q=C V=\left(\frac{\kappa \varepsilon_{0} A}{d}\right) V=\left(\kappa C_{0}\right) V \\
& P E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C}
\end{aligned}
$$

$$
Q_{\text {charge }}(t)=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right)
$$

$$
Q_{\text {discharge }}(t)=Q_{\max } e^{-\frac{t}{R C}}
$$

$$
C_{\text {parallel }}=\sum_{i=1}^{N} C_{i}
$$

$$
\frac{1}{C_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{C_{i}}
$$

Light as a Particle \& Relativity

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda}=p c \\
& K E_{\max }=h f-\phi=e V_{\text {stop }} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi) \\
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& p=\gamma m v \\
& E_{\text {total }}=K E+E_{\text {rest }}=\gamma m c^{2} \\
& E_{\text {total }}^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E_{\text {rest }}=m c^{2} \\
& K E=(\gamma-1) m c^{2}
\end{aligned}
$$

Geometry
Circles: $C=2 \pi r=\pi D \quad A=\pi r^{2}$
Triangles: $A=\frac{1}{2} b h$
Spheres: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$

Light as a Wave
$c=f \lambda=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}$
$S(t)=\frac{\text { energy }}{\text { time } \times \text { area }}=c \varepsilon_{o} E^{2}(t)=c \frac{B^{2}(t)}{\mu_{0}}$
$I=S_{\text {avg }}=\frac{1}{2} c \varepsilon_{o} E_{\max }^{2}=c \frac{B_{\text {max }}^{2}}{2 \mu_{0}}$
$P=\frac{S}{c}=\frac{\text { Force }}{\text { Area }}$
$S=S_{o} \cos ^{2} \theta$
$v=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{c}{n}$
$\theta_{\text {inc }}=\theta_{\text {refl }}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$
$M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$
$M_{\text {toral }}=\prod_{i=1}^{N} M_{i}$
$S_{\text {out }}=S_{\text {in }} e^{-\sum_{i} \mu_{x_{i}}}$
$H U=\frac{\mu_{w}-\mu_{m}}{\mu_{w}}$

Nuclear Physics

$$
\begin{aligned}
& E_{\text {binding }}=\left(Z m_{p}+N m_{n}-m_{r ब t}\right) c^{2} \\
& \frac{\Delta N}{\Delta t}=-\lambda N_{o} \rightarrow N(t)=N_{o} e^{-\lambda t} \\
& A(t)=A_{o} e^{-\lambda t} \\
& m(t)=m_{o} e^{-\lambda t} \\
& t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}
\end{aligned}
$$

Misc. Physics 110 Formulae
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=m \vec{a}$
$\vec{F}=-k \vec{y}$
$\vec{F}_{C}=m \frac{v^{2}}{R} \hat{r}$
$W=\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-\Delta P E$
$P E_{g r a v i t y}=m g y$
$P E_{\text {spring }}=\frac{1}{2} k y^{2}$
$|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$\vec{x}_{.}=\vec{x} \cdot+\vec{v} \cdot t+\frac{1}{C} \vec{a} t^{2}$

