Name \qquad
Physics 111 Quiz \#5, October 23, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. A green laser pointer $\left(\lambda_{g}=545 \mathrm{~nm}\right)$ is a source of polarized light. Suppose that the laser pointer puts out light with an intensity of S_{o} and the light passes through three polarizers. The first polarizer has its transmission axis vertical, the second has its transmission axis at 27° to the vertical, and the third has its transmission axis also vertical. If the green light emerges from the third polarizer with an intensity of $0.22 S_{0}$, at what angle was the electric field in the green laser light incident on the first polarizer?
$S_{1}=S_{0} \cos ^{2} \theta_{1}$
$S_{2}=S_{1} \cos ^{2} \theta_{2}=S_{0} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}=S_{0} \cos ^{2} \theta_{1} \cos ^{2} 27=0.79 S_{0} \cos ^{2} \theta_{1}$
$S_{3}=S_{2} \cos ^{2} \theta_{3}=0.79 S_{0} \cos ^{2} \theta_{1} \cos ^{2} \theta_{3}=0.79 S_{0} \cos ^{2} \theta_{1} \cos ^{2} 27=0.63 S_{0} \cos ^{2} \theta_{1}=0.22 S_{0}$
$\rightarrow \cos ^{2} \theta_{1}=\frac{0.22}{0.63}=0.35 \rightarrow \theta_{1}=\cos ^{-1}(\sqrt{0.35})=53.8^{0}$
2. Suppose the light that emerges from the three polarizers was allowed to strike a thin aluminum sheet (with area $A_{A l}=0.0037 \mathrm{~m}^{2}$). If the intensity of the light from the laser is $0.22 S_{0}$, where $S_{0}=80 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$, what would be the acceleration of the aluminum sheet (of mass 1 mg) due to the incident light? Assume the laser beam makes a circular spot of radius 2 mm on the aluminum sheet and the laser light is completely reflected.

$$
P=\frac{2 S}{c}=\frac{F}{A}=\frac{m a}{A} \rightarrow a=\frac{2 S A}{m c}=\frac{2 \times\left(0.22 \times 80 \frac{W}{m^{2}}\right) \times\left(\pi\left(2 \times 10^{-3} \mathrm{~m}\right)^{2}\right)}{1 \times 10^{-6} \mathrm{~kg} \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}=1.47 \times 10^{-6} \frac{\mathrm{~m}}{a^{2}}
$$

3. Suppose that the laser pointer is shown onto a rectangular block of diamond $\left(n_{d}=2.42\right)$ as shown below. If the angle of incidence on the upper air/diamond interface is $\theta_{\text {air }}=73^{\circ}$, will the light be totally internally reflected in the diamond?

For internal reflection the incident light has to exceed the critical angle between air and diamond
$n_{d} \sin \theta_{c}=n_{\text {air }} \sin 90 \rightarrow \theta_{c}=\sin ^{-1} \frac{n_{\text {air }}}{n_{d}}=\sin ^{-1} \frac{1.00}{2.42}$
$\theta_{c}=24.4^{0}$

The light strikes the bottom surface at an angle θ_{d} given by the law of refraction.
$n_{\text {air }} \sin \theta_{\text {air }}=n_{d} \sin \theta_{d} \rightarrow \sin \theta_{d}=\frac{n_{\text {air }}}{n_{d}} \sin \theta_{\text {air }}=\frac{1.00}{2.42} \sin 73=0.395 \rightarrow \theta_{d}=23.3^{0}$
Since this is less than the critical angle the light will not be internally reflected.
4. If the diamond block is 5 mm thick, what is the lateral displacement (d) of the beam as shown in the figure below?

The speed of light in diamond is: $v=\frac{c}{n_{d}}=$ $\frac{3 \times 10^{8} \frac{m}{s}}{2.42}=1.25 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$

The distance the light travels across the diamond is $\cos \theta_{d}=\frac{\text { thickness }}{L} \rightarrow L=$

$\frac{\text { thickness }}{\cos \theta_{d}}=\frac{5 \mathrm{~mm}}{\cos 23.3}=5.44 \mathrm{~mm}$
The lateral displacement is: $\sin \theta=\frac{d}{L} \rightarrow d=L \sin \theta=5.4 \mathrm{~mm} \times \sin 49.7=4.2 \mathrm{~mm}$
5. Suppose that the green laser beam is aimed onto the face of a transparent glass diamond cube, which of the following best illustrates the direction of the beam after it emerged from the diamond cube?
a. 1 .
b. 2 .
c. 3 .
d. 4.

1.

2.

(3.)

4.

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W=-q \Delta V_{f, i}
\end{aligned}
$$

Magnetic Forces and Fields

$$
\begin{aligned}
& F=q v B \sin \theta \\
& F=I l B \sin \theta \\
& \tau=N I A B \sin \theta=\mu B \sin \theta \\
& P E=-\mu B \cos \theta \\
& B=\frac{\mu_{0} I}{2 \pi r} \\
& \varepsilon_{\text {induced }}=-N \frac{\Delta \phi_{B}}{\Delta t}=-N \frac{\Delta(B A \cos \theta)}{\Delta t}
\end{aligned}
$$

Constants

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm} m^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{Nm}{ }^{2}}{\mathrm{C}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{~T}}{\mathrm{~A}}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{c^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

Electric Circuits

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t}=n e A v_{d} \\
& V=I R=I\left(\frac{\rho L}{A}\right) \\
& R_{\text {series }}=\sum_{i=1}^{N} R_{i} \\
& \frac{1}{R_{\text {parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& Q=C V=\left(\frac{\kappa \varepsilon_{0} A}{d}\right) V=\left(\kappa C_{0}\right) V \\
& P E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C} \\
& Q_{\text {charge }}(t)=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right) \\
& Q_{\text {discharge }}(t)=Q_{\max } e^{-\frac{t}{R C}} \\
& C_{\text {parallel }}=\sum_{i=1}^{N} C_{i} \\
& \frac{1}{C_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{C_{i}}
\end{aligned}
$$

Light as a Particle \& Relativity

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda}=p c \\
& K E_{\max }=h f-\phi=e V_{\text {stop }} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi) \\
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& p=\gamma m v \\
& E_{\text {total }}=K E+E_{\text {rest }}=\gamma m c^{2} \\
& E_{\text {total }}^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E_{\text {rest }}=m c^{2} \\
& K E=(\gamma-1) m c^{2}
\end{aligned}
$$

Geometry
Circles $C=2 \pi r=\pi D \quad A=\pi r^{2}$
Tri angles $A=\frac{1}{2} b h$
Sphere:s $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$

Light as a Wave

$$
\begin{aligned}
& c=f=\frac{1}{\sqrt{o o}} \\
& S(t)=\frac{\text { energy }}{\text { time area }}=c_{o} E^{2}(t)=c \frac{B^{2}(t)}{0} \\
& I=S_{\text {avg }}=\frac{1}{2} c{ }_{o} E_{\max }^{2}=c \frac{B_{\max }^{2}}{2} \\
& P=\frac{S}{c}=\frac{\text { Force }}{\text { Area }} ; P=\frac{2 S}{c} \\
& S=S_{o} \cos ^{2} \\
& v=\frac{1}{\sqrt{ }}=\frac{c}{n} \\
& { }^{\text {inc }}= \\
& n_{1} \sin _{\text {refl }}=n_{2} \sin { }_{2} \\
& \frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}} \\
& M=\frac{h_{i}}{h_{o}}=\frac{d_{i}}{d_{o}} \\
& M_{\text {total }}={ }_{i=1}^{N} M_{i} \\
& S_{\text {out }}=S_{\text {in }} e \\
& H U=\frac{w}{w}
\end{aligned}
$$

Nuclear Physics

$$
\begin{aligned}
& E_{\text {binding }}=\left(Z m_{p}+N m_{n}-m_{\text {rest }}\right) c^{2} \\
& \frac{\Delta N}{\Delta t}=-\lambda N_{o} \rightarrow N(t)=N_{o} e^{-\lambda t} \\
& A(t)=A_{o} e^{-\lambda t} \\
& m(t)=m_{o} e^{-\lambda t} \\
& t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}
\end{aligned}
$$

Misc. Physics 110 Formulae
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=m \vec{a}$
$\vec{F}=-k \vec{y}$
$\vec{F}_{C}=m \frac{v^{2}}{R} \hat{r}$
$W=\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-\Delta P E$
$P E_{\text {gravily }}=m g y$
$P E_{\text {spring }}=\frac{1}{2} k y^{2}$
$|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$\vec{x}_{f}=\vec{x}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}$

