Name \qquad
Physics 111 Quiz \#5, February 18, 2011
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. Suppose that you have 3 polarizers in series. The transmission axis of the $1^{\text {st }}$ polarizer is vertical, the $2^{\text {nd }}$ is 45° to the $1^{\text {st }}$, and the $3^{\text {rd }}$ is oriented 45° to the $2^{\text {nd }}$ (so that this $3^{\text {rd }}$ poloarizer is oriented 90° to the $1^{\text {st }}$ polarizer.) If unpolarized light with intensity S_{o} incident on the $1^{\text {st }}$ polarizer, the intensity of the light that emerges from the $3^{\text {rd }}$ polarizer is
a. zero.
b. $0.50 S_{o}$.
c. $0.25 S_{o}$.
d. $0.125 S_{o}$.
2. A light bulb in a circuit, shown on the right has a resistance of 12Ω and consumes 5 W of power when a 1.25 m long rod moves to the right at a constant speed of $3.1 \mathrm{~m} / \mathrm{s}$.

a. What magnitude of the magnetic field do you need to produce these results above?

$$
P=I^{2} R=\frac{(B L v)^{2}}{R} \rightarrow B=\sqrt{\frac{P R}{L^{2} v^{2}}}=\sqrt{\frac{5 W \times 12 \Omega}{(1.25 m)^{2}\left(3.1 \frac{m}{s}\right)^{2}}}=2.0 T \text { out of the page. }
$$

b. What external force is needed to pull the rod to the right at this speed?

$$
F_{e x t}=F_{B}=I L B=\frac{B^{2} L^{2} v}{R}=\frac{(2 T)^{2}(1.25 m)^{2}\left(3.1 \frac{\mathrm{~m}}{s}\right)}{12 \Omega}=1.61 \mathrm{~N} \text { to the right. }
$$

c. What is the magnitude and direction of the current that flows in the circuit?
$I=\frac{\varepsilon}{R}=\frac{B L v}{R}=\frac{(2 T)(1.25 \mathrm{~m})\left(3.1 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{12 \Omega} 0.65 \mathrm{~A}=650 \mathrm{~mA}$ clockwise to oppose the increase in magnetic flux.

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W_{A, B}=q \Delta V_{A, B}
\end{aligned}
$$

Magnetic Forces and Fields

$$
\begin{aligned}
& F=q v B \sin \theta \\
& F=I l B \sin \theta \\
& \tau=N I A B \sin \theta=\mu B \sin \theta \\
& P E=-\mu B \cos \theta \\
& B=\frac{\mu_{0} I}{2 \pi r} \\
& \varepsilon_{\text {induced }}=-N \frac{\Delta \phi_{B}}{\Delta t}=-N \frac{\Delta(B A \cos \theta)}{\Delta t}
\end{aligned}
$$

Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm}}{ }^{2}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{~N} n^{2}}{\mathrm{C}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{4}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{c^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

Electric Circuits

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t} \\
& V=I R=I\left(\frac{\rho L}{A}\right) \\
& R_{\text {series }}=\sum_{i=1}^{N} R_{i} \\
& \frac{1}{R_{\text {parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& Q=C V=\left(\frac{\kappa \varepsilon_{0} A}{d}\right) V=\left(\kappa C_{0}\right) V \\
& P E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C} \\
& Q_{\text {charge }}(t)=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right) \\
& Q_{\text {discharge }}(t)=Q_{\max } e^{-\frac{t}{R C}} \\
& C_{\text {paralel }}=\sum_{i=1}^{N} C_{i} \\
& \frac{1}{C_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{C_{i}}
\end{aligned}
$$

Light as a Particle \& Relativit

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda}=p c \\
& K E_{\max }=h f-\phi=e V_{\text {stop }} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi) \\
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& p=\gamma m v \\
& E_{\text {total }}=K E+E_{\text {rest }}=\gamma m c^{2} \\
& E_{\text {total }}^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E_{\text {rest }}=m c^{2} \\
& K E=(\gamma-1) m c^{2}
\end{aligned}
$$

Geometry
Nuclear Physics

$$
\left.E_{\text {binding }}=\left(Z m_{p}+N m_{n}-m_{\text {rest }}\right)\right)^{2}
$$

$$
\frac{\Delta N}{\Delta t}=-\lambda N_{o} \rightarrow N(t)=N_{o} e^{-\lambda t}
$$

$$
A(t)=A_{o} e^{-\lambda t}
$$

$$
m(t)=m_{o} e^{-\lambda t}
$$

$$
t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}
$$

Misc. Physics 110 Formulae
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=m \vec{a}$
$\vec{F}=-k \vec{y}$
$\vec{F}_{C}=m \frac{v^{2}}{R} \hat{r}$
$W=\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-\Delta P E$
$P E_{\text {gravity }}=m g y$
$A=\pi r^{2} P E_{\text {spring }}=\frac{1}{2} k y^{2}$
Circles: $C=2 \pi r=\pi D$

Triangles: $A=\frac{1}{2} b h$
Spheres: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$

