Name \qquad
Physics 111 Quiz \#7, November 12, 2021
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A certain metal is first illuminated with light of wavelength $\lambda_{1}=350 \mathrm{~nm}$ and then by light with wavelength $\lambda_{2}=540 \mathrm{~nm}$. In both cases, electrons are ejected from the metal's surface and the speed of the ejected electrons differs by a factor of 2 in the two cases.

1. What is the ratio of the kinetic energies K_{1} and K_{2} ?

The energy of the photon is inversely proportional to the wavelength. The larger wavelength has the smaller kinetic energy and thus the smaller speed. We have:

$$
\begin{aligned}
& K_{2}=\frac{1}{2} m v_{2}^{2}=\frac{1}{2} m v^{2} \\
& K_{1}=\frac{1}{2} m v_{1}^{2}=\frac{1}{2} m(2 v)^{2}=4\left(\frac{1}{2} m v^{2}\right)=4 K_{2} \\
& \frac{K_{1}}{K_{2}}=4
\end{aligned}
$$

2. What is the work function of the metal in eV ?

$$
\begin{aligned}
& K_{1}=4 K_{2} \rightarrow \frac{h c}{\lambda_{1}}-\phi=4\left(\frac{h c}{\lambda_{2}}-\phi\right) \rightarrow \frac{4 h c}{\lambda_{2}}-\frac{h c}{\lambda_{1}}=3 \phi \rightarrow \phi=\frac{h c}{3}\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right) \\
& \phi=\left\{\frac{6.63 \times 10^{-34} \mathrm{Js} \times 3 \times 10^{8} \frac{\mathrm{~m}}{s}}{3}\left(\frac{4}{540 \times 10^{-9} \mathrm{~m}}-\frac{1}{350 \times 10^{-9} \mathrm{~m}}\right)\right\} \times \frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}}=1.88 \mathrm{eV}
\end{aligned}
$$

3. What is the maximum wavelength (in nm) that will produce photoelectrons?

$$
K=\frac{h c}{\lambda_{\max }}-\phi=0 \rightarrow \lambda_{\max }=\frac{h c}{\phi}=\frac{6.63 \times 10^{-34} \mathrm{Js} \times 3 \times 10^{8 \frac{m}{s}}}{1.88 \mathrm{eV} \times \frac{1.6 \times 10^{-19} \mathrm{~J}}{1 \mathrm{eV}}}=6.61 \times 10^{-9} \mathrm{~m}=661 \mathrm{~nm}
$$

4. Suppose tungsten x-rays are used in a Compton effect experiment with an energy 69.3182 keV . Electrons are observed to recoil with a speed of $v=0.2 c$. What is the energy of the scattered x-rays?

$$
\begin{aligned}
& K=(\gamma-1) m c^{2}=\left(\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-1\right) m c^{2}=\left(\frac{1}{\sqrt{1-\frac{(0.2)^{2}}{c^{2}}}}-1\right) \times 511 \frac{\mathrm{keV}}{c^{2}} \times c^{2}=10.5372 \mathrm{keV} \\
& E=E^{\prime}+K \rightarrow E^{\prime}=E-K=69.3182 \mathrm{keV}-10.5372 \mathrm{keV}=58.781 \mathrm{keV}
\end{aligned}
$$

5. At what angle (with respect to the direction of the incident x -rays) was the x -ray detector placed to detect the scattered x -rays?

$$
\begin{aligned}
& \frac{1}{E^{\prime}}=\frac{1}{E}+\frac{(1-\cos \phi)}{E_{\text {rest }}} \rightarrow \cos \phi=1-E_{\text {rest }}\left(\frac{1}{E^{\prime}}-\frac{1}{E}\right) \\
& \cos \phi=1-511 \frac{\mathrm{keV}}{\mathrm{c}^{2}}\left(\frac{1}{58.781 \mathrm{keV}}-\frac{1}{69.3182 \mathrm{keV}}\right)=-0.3283 \rightarrow \phi=109.2^{0}
\end{aligned}
$$

