
Na	me
Ph	ysics 111 Quiz #7, March 12, 2021
	ease show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is orth 10 points total.
	I affirm that I have carried out my academic endeavors with full academic honesty.
1.	Suppose that you perform a photoelectric effect experiment with gold as the emitter. What is the work function of gold (in eV) if the minimum frequency of incident light needed to eject electrons from the gold surface is $f_{min} = 1.32 \times 10^{15} s^{-1}$?
2.	Suppose that you use the same gold emitter, but this time you shine a different color of light onto the metal surface and this particular color causes electrons to be emitted from the gold surface. To stop these electrons from striking the collector, we need to apply a stopping potential difference of 7.7 <i>V</i> . What was the wavelength of the light that was used?

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$\vec{F} = k \frac{Q_1 Q_2}{r^2} \hat{r}$$

$$\vec{E} = \frac{\vec{F}}{q}$$

$$\vec{E}_Q = k \frac{Q}{r^2} \hat{r}$$

$$PE = k \frac{Q_1 Q_2}{r}$$

$$V(r) = k \frac{Q}{r}$$

$$E_x = -\frac{\Delta V}{\Delta x}$$

$$W = -q \Delta V_{f,i}$$

Magnetic Forces and Fields

 $F = qvB\sin\theta$ $F = IlB\sin\theta$ $\tau = NIAB\sin\theta = \mu B\sin\theta$ $PE = -\mu B \cos\theta$ $B = \frac{\mu_0 I}{2\pi r}$ $\varepsilon_{induced} = -N \frac{\Delta \phi_B}{\Delta t} = -N \frac{\Delta (BA \cos \theta)}{\Delta t}$ **Constants** $g = 9.8 \frac{m}{2}$ $1e = 1.6 \times 10^{-19} C$ $k = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{Nm^2}{C^2}$ $\varepsilon_o = 8.85 \times 10^{-12} \ \frac{C^2}{Nm}$ $1eV = 1.6 \times 10^{-19} J$ $\mu_o = 4\pi \times 10^{-7} \frac{Tm}{A}$ $c = 3 \times 10^8 \, \frac{m}{c}$ $h = 6.63 \times 10^{-34} \, Js$ $m_e = 9.11 \times 10^{-31} kg = \frac{0.511 MeV}{c^2}$ $m_p = 1.67 \times 10^{-27} kg = \frac{937.1 MeV}{c^2}$ $m_n = 1.69 \times 10^{-27} \, kg = \frac{948.3 MeV}{s^2}$

 $1amu = 1.66 \times 10^{-27} kg = \frac{931.5 MeV}{e^2}$

 $Ax^2 + Bx + C = 0 \rightarrow x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$

 $N_A = 6.02 \times 10^{23}$

Electric Circuits

$$I = \frac{\Delta Q}{\Delta t}$$

$$V = IR = I \left(\frac{\rho L}{A}\right)$$

$$R_{series} = \sum_{i=1}^{N} R_{i}$$

$$\frac{1}{R_{parallel}} = \sum_{i=1}^{N} \frac{1}{R_{i}}$$

$$P = IV = I^{2}R = \frac{V^{2}}{R}$$

$$Q = CV = \left(\frac{\kappa \varepsilon_{0} A}{d}\right)V = (\kappa C_{0})V$$

$$PE = \frac{1}{2}QV = \frac{1}{2}CV^{2} = \frac{Q^{2}}{2C}$$

$$Q_{\text{charge}}(t) = Q_{\text{max}}\left(1 - e^{-\frac{t}{RC}}\right)$$

$$Q_{\text{discharge}}(t) = Q_{\text{max}}e^{-\frac{t}{RC}}$$

$$C_{parallel} = \sum_{i=1}^{N} C_{i}$$

$$\frac{1}{C_{series}} = \sum_{i=1}^{N} \frac{1}{C_{i}}$$

Light as a Wave

$$c = f / = \frac{1}{\sqrt{e_o m_o}}$$

$$S(t) = \frac{energy}{time ' area} = ce_o E^2(t) = c \frac{B^2(t)}{m_0}$$

$$I = S_{avg} = \frac{1}{2}ce_o E_{max}^2 = c \frac{B_{max}^2}{2m_0}$$

$$P = \frac{S}{c} = \frac{Force}{Area} \quad P = \frac{2S}{c}$$

$$S = S_o \cos^2 q$$

$$v = \frac{1}{\sqrt{em}} = \frac{c}{n}$$

$$q_{inc} = q_{refl}$$

$$n_1 \sin q_1 = n_2 \sin q_2$$

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

$$M = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

$$M_{total} = \bigcup_{i=1}^{\infty} M_i$$

$$S_{out} = S_{in} e^{-\frac{A}{c} m_i x_i}$$

$$HU = \frac{m_w - m_m}{m_w}$$

Light as a Particle & Relativity

$$E = hf = \frac{hc}{\lambda} = pc$$

$$KE_{\text{max}} = hf - \phi = eV_{\text{stop}}$$

$$\Delta\lambda = \frac{h}{m_e c} (1 - \cos\phi)$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$p = \gamma mv$$

$$E_{\text{total}} = KE + E_{\text{rest}} = \gamma mc^2$$

$$E_{\text{total}}^2 = p^2 c^2 + m^2 c^4$$

$$E_{\text{rest}} = mc^2$$

Geometry

$$Circles C = 2\pi r = \pi D$$
 $A = \pi r^2$
 $Tri \ angles A = \frac{1}{2}bh$
 $Spheres \ A = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$

 $KE = (\gamma - 1)mc^2$

Nuclear Physics

$$E_{binding} = (Zm_p + Nm_n - m_{rest})c^2$$

$$\frac{\Delta N}{\Delta t} = -\lambda N_o \rightarrow N(t) = N_o e^{-\lambda t}$$

$$A(t) = A_o e^{-\lambda t}$$

$$m(t) = m_o e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

Misc. Physics 110 Formulae

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{\Delta (mv)}{\Delta t} = m\vec{a}$$

$$\vec{F} = -k\vec{y}$$

$$\vec{F}_C = m\frac{v^2}{R}\hat{r}$$

$$W = \Delta KE = \frac{1}{2}m(v_f^2 - v_i^2) = -\Delta PE$$

$$PE_{gravity} = mgy$$

$$PE_{spring} = \frac{1}{2}ky^2$$

$$|\vec{A}| = \sqrt{A_x^2 + A_y^2}$$

$$\phi = \tan^{-1}\left(\frac{A_y}{A_x}\right)$$

$$\vec{v}_f = \vec{v}_i + \vec{a}t$$

$$v_f^2 = v_i^2 + 2a\Delta x$$

 $\vec{x}_f = \vec{x}_i + \vec{v}_i t + \frac{1}{2} \vec{a} t^2$