Physics 111 Homework Solutions for Tuesday 1/27 and Wednesday $1 / 28$

Tuesday, January 27, 2015
Chapter 17
Questions
17.2 Not true in general since $F=0$ if v is parallel to B for example. If F is non-zero, then it will be proportional to B .
17.5 a . The initial force is along z and the particle will travel in a circle in the $\mathrm{x}-\mathrm{z}$ plane in the positive z portion.
b. Since v and B are parallel there is no force and the particle will continue moving along the x -axis at constant v
c. The particle will travel in a helix along the B field direction (x-axis) since the component of v along the x-axis is unchanged. The initial component of v along the y axis will result in a force along the negative z axis and so the particle will travel in a "circle in the $y-z$ plane, below the z-axis" while traveling at constant speed along the x -axis, resulting in a net helical motion.
17.7 Assuming a positive charge,
a. F is into the paper
b. F is up out of the paper
c. v is up out of the paper

Multiple-Choice

17.2 C
17.3 B
17.5 B
17.6 D

Problems

17.1 The magnetic force is $3.0 \times 10^{-12} \mathrm{~N}$, and this gives for a velocity in a $30 T$ field, from $F=q v B \rightarrow v=\frac{F}{q B}=\frac{3.0 \times 10^{-12} \mathrm{~N}}{1.6 \times 10^{-19} \mathrm{C} \times 30 \mathrm{~T}}=6.25 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}$.
17.2. The magnetic force is given as
$F=q v B \sin \theta=1.6 \times 10^{-19} C \times 1.0 \times 10^{6} \frac{m}{s} \times 5 T \sin 90=8 \times 10^{-13} N$ for the velocity and the magnetic field perpendicular to each other. If the velocity vector were oriented at 45° then the magnetic force would be
$F=q v B \sin \theta=1.6 \times 10^{-19} C \times 1.0 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}} \times 5 \mathrm{~T} \sin 45=5.7 \times 10^{-13} \mathrm{~N}$.
17.3. Since the magnetic force is given as $F_{B}=q v B$ and this net force produces the circular motion so we have that
$F_{B}=q v B=\frac{m v^{2}}{R} \rightarrow v=\frac{q B R}{m}=\frac{1.6 \times 10^{-19} C \times 6 T \times 0.02 \mathrm{~m}}{1.67 \times 10^{-27} \mathrm{~kg}}=1.15 \times 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}}$.
17.4. From the velocity given, the component perpendicular to the field is $v_{\perp}=v \sin \theta=1 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}} \sin 45=7.07 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}$ while the component parallel to the field is $v_{/ /}=v \cos \theta=1 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}} \cos 45=7.07 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}$. The perpendicular component will feel a magnetic force and this force will cause the electron to trace out a circle with radius given by
$F_{B}=F_{C} \rightarrow q v_{\perp} B=m \frac{v_{\perp}^{2}}{R} \rightarrow R=\frac{m v_{\perp}}{q B}=\frac{9.11 \times 10^{-31} \mathrm{~kg} \times 7.07 \times 10^{4} \frac{\mathrm{~m}}{s}}{1.6 \times 10^{-19} \mathrm{C} \times 2 \mathrm{~T}}=2.01 \times 10^{-7} \mathrm{~m}$.
Since the parallel component fells no force, this velocity is constant and merely caries the electron forward. The net motion is a helix about the magnetic field.
17.5. After acceleration through a potential difference of $\Delta V=100 \mathrm{~V}$, the electrons have gained a $K E=\frac{1}{2} m v^{2}=e \Delta V$ by the work-kinetic energy theorem. Thus we can find their velocity: $v=\sqrt{\frac{2 e \Delta V}{m}}=\sqrt{\frac{2 \times 1.6 \times 10^{-19} C \times 100 \mathrm{~V}}{9.11 \times 10^{-31} \mathrm{~kg}}}=5.93 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}$. Then the centripetal force is caused by the net magnetic force and we have $F_{B}=F_{C} \rightarrow q v B=m \frac{v^{2}}{R} \rightarrow B=\frac{m v}{q R}=\frac{9.11 \times 10^{-31} \mathrm{~kg} \times 5.93 \times 10^{6} \frac{\mathrm{~m}}{s}}{1.6 \times 10^{-19} \mathrm{C} \times 0.05 \mathrm{~m}}=6.7 \times 10^{-4} \mathrm{~T}$.
17.6. The radius of the electron's orbit is determined by the magnetic force. We have
$F_{B}=F_{C} \rightarrow q v_{\perp} B=m \frac{v_{\perp}^{2}}{R}$
$\rightarrow R=\frac{m v_{\perp}}{q B}=\frac{9.11 \times 10^{-31} \mathrm{~kg} \times 0.05 \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \mathrm{sin} 45}{1.6 \times 10^{-19} \mathrm{C} \times 0.5 T}=1.21 \times 10^{-4} \mathrm{~m}$
The pitch is given as product of the parallel component of the velocity (a constant) and the period of the circular motion about the magnetic field line. The period is given by $T=\frac{2 \pi R}{v_{\perp}}=\frac{2 \pi \times 1.21 \times 10^{-4} \mathrm{~m}}{0.05 \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \sin 45}=7.15 \times 10^{-11} \mathrm{~s}$ and thus the pitch is $p=v \cos \theta \times T=0.05 \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cos 45 \times 7.15 \times 10^{-11} \mathrm{~s}=7.6 \times 10^{-4} \mathrm{~m}$.
17.7. A charge-to-mass ratio experiment
a. After acceleration through a potential difference of $\Delta V=200 \mathrm{~V}$, the electrons have gained a $K E=\frac{1}{2} m v^{2}=e \Delta V$ by the work-kinetic energy theorem. Thus we can find their velocity: $v=\sqrt{\frac{2 e \Delta V}{m}}=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \mathrm{C} \times 200 \mathrm{~V}}{9.11 \times 10^{-31} \mathrm{~kg}}}=8.4 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}$
b. The electrons orbit is a circle caused by the centripetal force and this is caused by the net magnetic force that acts on the electron. Equating the net magnetic force to the centripetal force we can calculate the magnetic field. We have

$$
\begin{aligned}
& F_{B}=F_{C} \rightarrow q v B=m \frac{v^{2}}{R} \\
& \rightarrow B=\frac{m v}{q R}=\frac{9.11 \times 10^{-31} \mathrm{~kg} \times 8.4 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}}{1.6 \times 10^{-19} \mathrm{C} \times 0.075 \mathrm{~m}}=6.4 \times 10^{-4} \mathrm{~T}=0.64 \mathrm{~m} 7
\end{aligned}
$$

c. The angular velocity is given by $\omega=\frac{v}{R}=\frac{8.4 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}}{0.075 \mathrm{~m}}=1.1 \times 10^{8} \mathrm{~s}^{-1}$.
d. The frequency and period are given respectively as

$$
\begin{aligned}
& \omega=2 \pi f \rightarrow f=\frac{\omega}{2 \pi}=\frac{1.1 \times 10^{8} s^{-1}}{2 \pi}=1.8 \times 10^{7} s^{-1} \text { and } \\
& T=\frac{1}{f}=\frac{1}{1.8 \times 10^{7} s^{-1}}=5.6 \times 10^{-8} \mathrm{~s} .
\end{aligned}
$$

17.8 For ${ }^{64} \mathrm{Zn}$, the mass is 64 times $1.67 \times 10^{-27} \mathrm{~kg}=1.0688 \times 10^{-25} \mathrm{~kg}$, while for ${ }^{66} \mathrm{Zn}$, the mass is 66 times $1.67 \times 10^{-27} \mathrm{~kg}=1.1022 \times 10^{-25} \mathrm{~kg}$. The magnetic force causes the particles to move in a circle of radius r at constant speed given by
$r=\frac{m v}{q B}=\frac{m}{q B} \sqrt{\frac{2 q \Delta V}{m}}=\frac{1}{B} \sqrt{\frac{2 m \Delta V}{q}}$.
For ${ }^{64} \mathrm{Zn}$, the radius is
$r=\frac{1}{B} \sqrt{\frac{2 m \Delta V}{q}}=\frac{1}{10 T} \sqrt{\frac{2 \times 1.0688 \times 10^{-25} \mathrm{~kg} \times 10000 \mathrm{~V}}{2 \times 1.6 \times 10^{-19} \mathrm{C}}}=8.2 \mathrm{~mm}$.
For ${ }^{66} \mathrm{Zn}$, the radius is $r=\frac{1}{B} \sqrt{\frac{2 m \Delta V}{q}}=\frac{1}{10 T} \sqrt{\frac{2 \times 1.1022 \times 10^{-25} \mathrm{~kg} \times 10000 \mathrm{~V}}{2 \times 1.6 \times 10^{-19} \mathrm{C}}}=8.3 \mathrm{~mm}$.

Wednesday, January 28, 2015

Chapter 15
Questions

- None

Multiple-Choice

- None

Problems

- None

