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Chapter 24 
Questions  
Chapters 19 & 24 
Questions 
24.1  Based on special relativity we know that as a particle with mass travels near the speed 

of light its mass increases. In order to accelerate this object from rest to a speed near 
that of light would require an ever increasing force (one that rapidly becomes larger by 
a factor of γ.) There are no known forces that could accelerate a particle with mass to 
the speed of light in a finite amount of time and with a finite amount of energy. So for 
objects with no rest mass, as they travel at the speed of light, there mass does not 
increase with increasing speed and we avoid these problems of accelerating the 
massless particles.  

 
24.6 The Compton shift in wavelength for the proton and the electron are given by 

� 

Δλp = h
mpc

1− cosφ( )
 and 

� 

Δλe = h
mec

1− cosφ( )
 respectively. Evaluating the ratio of 

the shift in wavelength for the proton to the electron, evaluated at the same detection 

angle φ, we find 
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Δλp

Δλe
= me

mp

= 1.67 ×10
−27kg

9.11×10−31kg
= 1
1833

= 5 ×10−4

.  Therefore the shift in 
wavelength for the proton is smaller than the wavelength shift for the electron. 

 
 
Multiple-Choice 
19.16 D 
19.17 A 
 
Problems 

19.15 The frequency is given as
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19.17 A Neodymium-YAG laser 

a.   The number of photons is given as the total beam energy divided by the energy 

per photon, or
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b.   The power in the beam is the energy delivered per unit time, or
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c.   The average power output of the laser is
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19.18  The range of frequencies is given as  
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 The energies are given by 
hfhcE ==

λ  which for 750 nm the energy is 
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 while the energy for the 400 nm photon is 
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19.20  The energy of the emitted photon is equal to the difference in energies of the two 

 levels:
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19.21 Another Neodymium-YAG laser 

a.   Each photon has an energy given by 
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b.   Since the total energy is 5J, we calculate the number of photos by dividing the 
total energy by the energy per photon.  Thus we have 
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c.   In 1 ns, if all the photons in part b are absorbed, each carrying a momentum p, 

then the force is the total change in momentum and is given by 
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24.1 Relativistic energy and momentum for an object of mass m. 
 For an object with a m = 1kg rest mass, it has a rest energy of E = mc2 = 9x1016 J.    

 The Lorentz factor is given by:
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, with the relativistic momentum p = 
 γmv, and the relativistic energy E2 = p2c2 +m2c4. 
 

a. For a velocity of 0.8c,  
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 The relativistic momentum and energy are therefore, 
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b.  Following the procedure in part a, for a velocity of 0.9c,  
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, the relativistic momentum is 6.19x108  
  kgm/s,  and the relativistic energy is 2.07x1017 J. 

c.   For a velocity of 0.95c, γ = 3.20, the relativistic momentum is 9.13x108 kgm/s, 
and the relativistic energy is 2.88x1017 J. 

d.   For a velocity of 0.99c, γ = 7.09, the relativistic momentum is 2.11x109 kgm/s, 
and the relativistic energy is 6.387x1017 J. 

e. For a velocity of 0.999c, γ = 22.4, the relativistic momentum is 6.70x109 
kgm/s, and the relativistic energy is 2.0x1018 J. 

 
 



24.2 For an electron with rest mass 9.11x10-31 kg, it has a rest energy of E = mc2 = 

 8.199x10-14 J = 0.511 MeV.    The Lorentz factor is given by:
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 the relativistic momentum and energy are given respectively as p = γmv and 
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a.   For the electron with a velocity of 0.8c, g = 1.67.  The relativistic momentum 
and energy are therefore, 
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Using the fact that 1.6x10-19 J = 1 eV, the relativistic energy is given as 
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be shown that the total relativistic energy is given as restEmcE γγ == 2
.  Thus 

the relativistic energy can be computed in a more efficient method.  
MeVMeVEE rest 855.0511.067.1 =×== γ . 

b.   Following the method outlined in part a, for a velocity of 0.9c, γ = 2.29.  The 
relativistic momentum is therefore, 
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c.   For a velocity of 0.95c, γ = 3.2.  The relativistic momentum is therefore, 
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d.   For a velocity of 0.99c, γ = 7.09.  The relativistic momentum is therefore, 
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e.   For a velocity of 0.999c, γ = 22.4.  The relativistic momentum is therefore, 
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24.4  The relativistic momentum and relativistic energy are given as mvp γ=  and 

 
2mcE γ=  respectively.  To show the relation between energy and momentum, 

 equation (24.8), we start by squaring the relativistic energy.  This gives us 

 
4222 cmE γ= .  Next, we use a mathematical “trick.”  We add and subtract the 

 same quantity from the right hand side of the equation we just developed.  The 
 quantity we want to add and subtract is v2.  This produces factoring out a factor of 

 c2, ( )2222222 vvccmE −+= γ .  Expanding this result we get 

 ( )2222222222 vccmvcmE −+= γγ .  Recognizing that the first term is nothing 

 more than p2c2 allows us to write ( )22222222 vccmcpE −+= γ .  Factoring out a 

 c2 from the 2nd term on the right hand side give us 
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b. its wavelength is given  by the de Broglie relation 
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c. its frequency is given by 
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24.8 Photoelectric effect in cesium 

We are given the work function for cesium is φ = 2.9 eV = 4.64x10-19 J. 
a.   The maximum wavelength corresponds to the minimum frequency.  Therefore, 
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b.   If 400nm photons are used, their energy is given by 
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Therefore the maximum kinetic energy is given as 
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c.   A 1 W beam of photons corresponds to 1 J of photons incident per second.  In 1 J 

of photons there are 18
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J photons.  If the photo ejection 

of an electron is 100% efficient, then for each photon lost, one electron is 
produced.  Thus the photocurrent is the amount of charge produced each second, 
where 1 electron has 1.6x10-19 C of charge.  This corresponds to a total charge of 

CCQ 322.0106.11001.2 1918 =×××= −  of charge in 1 second.  Therefore the 
photocurrent is 0.322 A = 322 mA. 

d.   If green photons are used with a wavelength of 500 nm, this corresponds to an 
energy of  
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The maximum f that will allow for photo ejection of electrons is the one where the 
electrons are ejected with a maximum kinetic energy equal to zero.  Therefore 

0minmin =−= φhfKE , and solving for φ we obtain eVhf 49.2min == φ . 
 
24.9  The maximum KE is given by the product of the stopping potential (0.82V) and 

the electron’s charge (e-).  Thus the maximum eVeVKE stop 82.0== .  This is 
equal to the energy of the photons incident minus the work function (the 
minimum energy needed to eject a photoelectron).  In symbols, 
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