
Physics 120                                               Winter 2026 
Lab 5: Hooke’s Law:  Springs and Karate Boards 

 
Name:   

Lab Partner(s):  

Honor Code Statement: I affirm that I have carried out my academic endeavors with full 

academic honesty.  ___________________________________________________ 

 
Please neatly answer all of the questions in the lab packet.  Make sure you attach any graphs 

generated, Excel files you produced, and any calculations/derivations you did.  This lab packet is 
due one week from the completion of the lab. 

 
 
Introduction 
Elastic materials are a class of materials that deform under a force and when the force is removed, 
the material returns to its original shape.  Springs provide a simple but accurate model of how 
structural forces respond to deformations and are a great example of an elastic material.  The 
expression for the spring force is given by Hooke’s Law, 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝐸 ∙ 𝑠𝑡𝑟𝑎𝑖𝑛, where the stress 
𝜎 = !

"
, for a material of cross-sectional area 𝐴.  The strain of the material under the force 𝐹, is 

given by ∆$
$

, where ∆𝐿 is the change in length of the system of length 𝐿, and 𝐸 is the elastic (or 
Young’s) modulus of the material. Rearranging the above we can cast Hooke’s law in a more 
useful form, 𝐹 = −𝑘𝑥, where 𝑥 = ∆𝐿, the stretch or compression from equilibrium, 𝑘 = %"

$
, is the 

stiffness or spring constant, and the negative sign is due to the spring force being a restoring force, 
tending to restore the system to its equilibrium position.  In the first part of the lab, we will 
investigate the relationship between the restoring spring force and the stretch of a spring.  In the 
second part of the lab, we will look at a seemingly unspring like system, a pine karate board.   
 
 
 
 
 
 
 
 
 
 
 
 
 



Procedure 
Part I:  Springs 
1.  Using Excel, make the following columns: mass, spring stretch 𝑥, and the magnitude of the 

spring force. 
2.  Hang a spring from the hook.  Measure the position of the end of the spring and record this as 

the spring’s relaxed position, 𝐿&.  
3.  Hang a small mass on the end of the spring, allow the mass to come to rest, and measure and 

record the new position of the end of the spring (not the end of the mass), 𝐿.  Determine the 
stretch of the spring, 𝑥 = ∆𝐿 = 𝐿 − 𝐿&.   

4. Determine the spring force for this mass. 
5. Hang successfully larger masses on the spring, measure the new position of the end of the spring 
𝐿, and calculate 𝑥 the spring force. 

6.  Repeat for a number of masses (use at least five masses, total). 
 

Analysis: 
1. For each spring, plot the spring force vs. the stretch of the spring.  Does your spring obey 

Hooke’s Law?  What aspects of the plot supports your claim?  Consider the expression of 
Hooke’s law and whether your plot fits a proportionality (a linear relation through the origin). 

 
 
 
 
 
 
 
 
 
 
2.  Fit a straight line to your curve (and write the equation of the curve fit for 𝐹 below) and use the 

fit to calculate the spring stiffness parameter 𝑘.  Should you demand that the straight line go 
through the origin?  Explain. 

 
𝐹 = 

 
𝑘 = 

 
 
 
 



3. Perform a linear regression analysis to get the uncertainties in the fit parameters.  Does a zero 
y-intercept agree with your fit?  Explain. 

 
∆𝑚 = 

 
∆𝑏 = 

 
 
 
 
 
 
 
 
 

 
 

4.  What is the stiffness of your spring with uncertainty?  Does your value seem reasonable or not?  
Explain. 

 

𝑘'()*+, = 𝑘 ± ∆𝑘 

 

 
 

 
 

 
 

 
 

 
 

 
 

 



Part II:  Restoring Force of Wooden Pine Karate Board 
When a force is applied to a wood board, the board must exert a force in return to hold itself 
together.  But there is a limit; if the external force does enough work on the board, it will break. 
 
1. Measure and record in a new Excel table the mass of five different bricks and calculate the 

average.  Calculate the standard error in your inferred mass of an individual brick. 
 

𝑚-., = 
 

𝛿𝑚 = 
 
 
2. Measure the mass of the apparatus’ tray and its uncertainty and record these in the Excel table 

and below. 
 

𝑚/)-0 = 
 

𝛿𝑚/)-0 = 
 
 
3. Carefully place the piece of wood on the cross bars and place the gauge’s needle at the center 

of the board.  Read the initial setting of the gauge, 𝐿&.  Record this number in Excel and label 
as the relaxed position for the board.  (Record your estimated uncertainty in this number also.) 

 
𝐿& = 

 
𝛿𝐿& = 

 
 
4. Input the equations to calculate the total force hanging on the board due to the tray and the 

deflection of board from the relaxed position, |𝐿 − 𝐿&|.  The gauge’s reading will decrease as 
the deflection of the board increases and the gauge may go around a few times.  You need to 
keep careful track of the gauge readings. 

5. Carefully hang the tray on the board and then and record the new gauge reading, 𝐿.  Excel 
should calculate the stretch from equilibrium as you enter the data. 

6. Now, carefully and methodically add one brick at a time onto the middle of the.  Read and 
record the new gauge setting 𝐿 in the appropriate box. 

7. Continue adding bricks, and entering the data until the board breaks.  (Note: be careful to keep 
your feet away from the area below tray, in case the board breaks while you’re there.) 

 



Analysis 
1. Plot the weight added versus the displacement of the board from equilibrium.  What is the 

relationship between the weight added and the displacement of the board from equilibrium?   
Does the wood board’s restoring force obey Hooke’s Law?  Is Hooke’s Law appropriate for 
modeling structural forces?  Explain. 

 
 
 
 
 
 
 
 
 
 
 
2. From your plot, what is the stiffness parameter 𝑘12-)3, with uncertainty ∆𝑘12-)3, for the 

board? 
 

𝑘 = 𝑘12-)3 ± ∆𝑘12-)3 = 
 
 
 
 
3. Derive an expression for the work done by the force of gravity with the addition of each brick?  

In the column for work done on the board enter an equation that correctly calculates the amount 
of work done in each individual step. 

 
𝑊 = 

 
 
 
 
 
 
 
 
 
 



4. How much total work done in breaking the board from Excel. 
 

𝑊/2/-4 = 
 
 
 
5. Since 𝑊 = ∫ 𝐹⃗ ∙ 𝑑𝑟, or ∫𝐹𝑑𝑦 for the one-dimensional case here, the work done should also 

equal the area under the curve of the force vs. distance.  Note the shape of this plot and calculate 
the area under the curve.  Do you get the same answer as in step 4? 

 
𝑊/2/-4 = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.   For the total work done, you need to determine an uncertainty in the work done on the board, 
but unlike all of the calculations you’ve done so far, you have only one calculation, not many.  
Therefore, you now need to do “propagation of uncertainty” calculation.  Your calculation of 
work depends on the mass of each brick, the number of bricks, and the deflections of the board.  
You should already have uncertainties in the mass of each brick and the deflection of the board.  
You now need to propagate these 3 uncertainties to get an uncertainty in the total work. To 
propagate the uncertainties, we add the uncertainties in quadrature according to: 

 

𝛿𝑊 = =>
𝜕𝑊
𝜕𝑚@
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∆𝑚5 + >
𝜕𝑊
𝜕𝑁@
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𝜕𝑊
𝜕𝑦 @
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∆𝑦5. 

 

 In the expression above each term has an expression 67
68

. These terms represent the partial 
derivative of the function (𝑊) taken with respect to a given variable (say mass 𝑚) with the 
other variables held constant (number of bricks 𝑁 and deflection 𝑦).  These terms could be 
negative; hence we square them to make them positive.  Also, we need the uncertainty in the 
work done, so dimensionally, we need to multiply each square partial derivative term by an 
appropriate dimensional term in either mass ∆𝑚, number of bricks ∆𝑁, or deflection ∆y.  

 
 Derive an expression (and then evaluate it) for the uncertainty in the work done and enter it 

below. 
 

𝛿𝑊 = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7. The work that the weight of the bricks did on the board did not change the board’s kinetic 
energy.  Where did this work done, or energy, go?  Explain. 

 
 
 
 
 
 
 
 
 
 
8. Consider breaking the board by dropping a hard object onto the board, such as your hand.  As 

the object falls, gravity does work to give it kinetic energy.  When the object hits the board, 
the force of the board does negative work on the object, your hand, to bring it to rest, and 
deflecting the board by an amount ∆𝑦 at which point the board breaks.  Using the Work-Kinetic 
energy theorem calculate the minimum height from which a 1-kg mass must be dropped in 
order for it to gain enough kinetic energy to break the board.  Use propagation of uncertainty 
to get an uncertainty in this number. 

 
ℎ9*+ = ℎ ± 𝛿ℎ = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9. Determine a method to calculate the mass of a human fist, with its uncertainty.  Starting from 
the definition of work, calculate the speed that your hand must moving just before it strikes the 
board in order to break a board.  Propagate your uncertainties again.  Do you think this speed 
is reasonable and can be accomplished by you?  Explain. 

 
𝑣9*+ = 𝑣 ± 𝛿𝑣 = 

 
 
 
 
 
 
 


