Name
Physics 120 Quiz \#1, January 14, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. Suppose that you are driving down a road at $60 \mathrm{mph}\left(\sim 26.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$. Exactly 300 m ahead of you, there is a sign that says the speed limit in town is $30 \mathrm{mph}\left(\sim 13.4 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$. You put on your brakes and decelerate at a rate of $5 \frac{\mathrm{mph}}{\mathrm{s}}\left(\sim 2.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$. Unfortunately, a cop sees you, pulls you over and says that when you crossed into the 30 mph zone, you were speeding and gives you a ticket. You of course think that you were not speeding. When you go to court, you argue your case before the judge. To prove that you were not speeding, you use the information above and calculate for the judge how far you it would have taken you to reach 30 mph from a starting speed of 60 mph . What is that distance?

$$
\begin{aligned}
& v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \quad x \\
& \left(13.4 \frac{\mathrm{~m}}{s}\right)^{2}=\left(26.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \quad 2 \times 2.2 \frac{\mathrm{~m}}{s^{2}} \quad x \\
& \quad x=122.4 \mathrm{~m}
\end{aligned}
$$

2. Another way you could have proven to the judge that you were not speeding is to calculate your speed if you were to travel the full 300 m . What would your speed have been after this distance and what would this imply about you speeding?
$v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \quad x=\left(26.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \quad 2 \times 2.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 300 \mathrm{~m}=601.8 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
$v_{f}=$ not defined
This result means that (keeping this deceleration) you would have stopped well before 300 m .
3. A rock is dropped from rest from the edge of a cliff of unknown height. The rock hits the water below the cliff $6.2 s$ after it was released. What is the height of the cliff?
$y_{f}=y_{i}+v_{i y}+\frac{1}{2} a_{y} t^{2}=\frac{1}{2} \quad 9.8 \frac{m}{s^{2}}(6.2 s)^{2}=188.4 m$ or $188.4 m$ below where the rock was dropped.
4. Suppose now that another rock was thrown from the same cliff but this time with an unknown initial vertical velocity. The rock is observed to hit the water $4.5 s$ after it was thrown. What are the magnitude and direction of the initial velocity that the stone was thrown from the cliff with?
$y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}$
$188.4 m=v_{i y}(4.5 s) \quad \frac{1}{2} \quad 9.8 \frac{m}{s^{2}}(4.5 s)^{2}=188.4 m$
$v_{i y}=19.9 \frac{m}{s}$

The rock was thrown in the vertically downward direction (the negative sign) with a magnitude of $19.9 \frac{\mathrm{~m}}{\mathrm{~s}}$.
5. For the case in part 4, what is the impact velocity (magnitude and direction) of the rock just before it struck the water?
$v_{f y}=v_{i y}+a_{y} t=19.9 \frac{\mathrm{~m}}{\mathrm{~s}} \quad 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad 4.5 s=64 \frac{\mathrm{~m}}{\mathrm{~s}}$

Physics 120 Formula Sheet

General Definitions of Motion
$\Delta \vec{r}=\langle\Delta x, \Delta y, \Delta z\rangle=\left\langle x_{f}-x_{i}, y_{f}-y, z_{f}-z_{i}\right\rangle$
$\vec{v}=\frac{\Delta \vec{r}}{\Delta t}=\left\langle\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}, \frac{\Delta z}{\Delta t}\right\rangle$
$\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\left\langle\frac{\Delta v_{x}}{\Delta t}, \frac{\Delta v_{y}}{\Delta t}, \frac{\Delta v_{z}}{\Delta t}\right\rangle$
$d \vec{r}=\langle d x, d y, d z\rangle$
$\vec{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle=\frac{d \vec{r}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$
$\vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=\frac{d \vec{v}}{d t}=\left\langle\frac{d v_{x}}{d t}, \frac{d v_{y}}{d t}, \frac{d v_{z}}{d t}\right\rangle$

Geometry
$C=2 \pi r A_{\text {circle }}=\pi r^{2} ; A_{\text {rect }}=L W$
$A_{\text {triangle }}=\frac{1}{2} b h ; A_{\text {sphere }}=4 \pi r^{2}$
$V_{\text {sphere }}=\frac{4}{3} \pi r^{3} ; \quad V_{\text {cyl }}=\pi r^{2} h ; \quad V_{\text {cone }}=\frac{1}{3} \pi r^{2} h$

Motion with constant acceleration
$\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2} \rightarrow\left\langle x_{f}, y, z_{f}\right\rangle=\left\langle x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}, y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}, z+v_{i z} t+\frac{1}{2} a_{z} t^{2}\right\rangle$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t \rightarrow\left\langle v_{f x}, v_{f y}, v_{f z}\right\rangle=\left\langle v_{i x}+a_{x} t, v_{i y}+a_{y} t, v_{i z}+a_{z} t\right\rangle$

Forces/Momentum
$\vec{p}=m \vec{v}$
$\vec{F}_{n e t}=\frac{d \vec{p}}{d t}=m \vec{a}$
$\vec{p}_{f}-\vec{p}_{i}=\int d \vec{p}=\int \vec{F}_{n e t} d t$
$\vec{J}=\int \vec{F}_{n e t} d t$
$\vec{F}_{n e t}=\vec{F}_{\|}+\vec{F}_{\perp}=\frac{d \vec{p}}{d t} \hat{p}+\vec{p} \frac{d \hat{p}}{d t}=m \vec{a}_{\|}+m \vec{a}_{\perp}$
$\left|\vec{F}_{\perp}\right|=m\left|\vec{a}_{\perp}\right|=m \frac{v^{2}}{r}$
$\vec{F}_{G}=G \frac{M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12} \rightarrow\left|\vec{F}_{G}\right|=G \frac{M_{1} M_{2}}{r_{12}^{2}}$
$\vec{F}_{G}=m \vec{g} ; \quad \vec{g}=G \frac{M_{c b}}{\left(R_{c b}+h\right)} \hat{r}$
$\left|\vec{F}_{f r}\right|=\mu\left|\vec{F}_{N}\right|$
$\vec{F}_{s}=-k \Delta \vec{r}$
Vectors
$\vec{C}=\vec{A}+\vec{B} \rightarrow\left\langle C_{x}, C_{y}, C_{z}\right\rangle=\left\langle A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}\right\rangle+\left\langle C_{x}, C_{y}, C_{z}\right\rangle ; \quad \overrightarrow{|C|}=\sqrt{C_{x}^{2}+C_{y}^{2}+C_{z}^{2}}$
$\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
$\vec{A} \times \vec{B}=|\vec{A}||\vec{B}| \sin \theta=\left\langle a_{y} b_{z}-b_{y} a_{z}, a_{z} b_{x}-b_{z} a_{x}, a_{x} b_{y}-b_{x} a_{y}\right\rangle$

Constants

$g=9.8 \frac{m}{s^{2}} ; \quad G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{k g^{2}}}$
$v_{\text {sound }}=343 \frac{\mathrm{~m}}{\mathrm{~s}} ; \quad v_{\text {light }}=c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$ $N_{A}=6.02 \times 10^{23}$

Work and Energy
$W_{T}=\int d W_{T}=\int \vec{F} \cdot d \vec{r}=\Delta K_{T}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{p_{f}^{2}}{2 m}-\frac{p_{i}^{2}}{2 m}$
$W_{R}=\int d W_{R}=\int \vec{\tau} \cdot d \vec{\theta}=\Delta K_{R}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=\frac{L_{f}^{2}}{2 I}-\frac{L_{i}^{2}}{2 I}$
$W_{\text {net }}=W_{T}+W_{R}=\Delta E_{\text {sys }}=\left\{\begin{array}{c}0 \\ W_{f r}\end{array}\right.$
$W_{\text {net }}=-\sum \Delta U=\Delta K_{T}+\Delta K_{R}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k x^{2}$
Rotational Motion
$s=r \theta \rightarrow d s=r d \theta$
$\frac{d s}{d t}=r \frac{d \theta}{d t} \rightarrow v=r \omega ; \quad \omega=\frac{d \theta}{d t}$
$a=\frac{d v}{d t}=r \frac{d \omega}{d t}=r \alpha ; \quad \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$
Rotational Forces/Momentum
$\vec{\tau}=\vec{r} \times \vec{F}=\frac{d \vec{L}}{d t}=I \vec{\alpha}$
$|\vec{\tau}|=r F \sin \theta=r_{\perp} F=r F_{\perp}$
$\vec{L}=I \vec{\omega}$
$I=\int r^{2} d m$
$\vec{L}_{f}=\vec{L}_{i}+\int \vec{\tau}_{n e t} d t$

Some moments of inertia from Halliday, Resnick, \& Walker, $10^{\text {th }}$ edition.

