Name
Physics 120 Quiz \#2, January 17, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Suppose that you reside on the third floor of a multi-story residence hall. One day you are looking out of your window and you notice water balloons falling past and that they strike the ground located 15 m below $0.83 s$ seconds after they pass you.
a. With what velocity were the water balloons going when they passed by your window?

$$
\begin{aligned}
& y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2} \\
& y_{f}=y_{i}+v_{i y} t-\frac{1}{2} g t^{2} \\
& 0 m=15 m+v_{i y}(0.83 s)-4.9 \frac{\mathrm{~m}}{s^{2}}(0.83 s)^{2} \\
& v_{i y}=-14 \frac{m}{s}
\end{aligned}
$$

b. With what velocity would the water balloons impact the sidewalk below?

$$
v_{f y}=v_{i y}+a_{y} t=-14 \frac{m}{s}-9.8 \frac{m}{s^{2}}(0.83 s)=-22.1 \frac{\mathrm{~m}}{s}
$$

c. If the water balloons were dropped from rest, from what floor were the balloons being dropped? Assume that each floor is $5 m$ high.

$$
\begin{aligned}
& v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y=-2 g \Delta y \\
& \Delta y=-\frac{v_{f y}^{2}}{2 g}=-\frac{\left(-22.1 \frac{m}{s}\right)^{2}}{2 \times 9.8 \frac{m}{s^{2}}}=-24.9 \mathrm{~m} \\
& \Delta y=y_{f}-y_{i}=-y_{i} \sim-25 m \times \frac{\text { floor }}{5 m}=5^{\text {th }} \text { floor }
\end{aligned}
$$

d. Which of the following would give a possible trajectory for the water balloons as a function of time? Take up away from the ground as the positive y-axis.
1.

2.

(3.)

5. $\quad \mathrm{y}(\mathrm{m})$

e. Suppose that for some unexplained reason that one of the water balloons didn't break when it hit the ground. You go pick it up and decide that it would be a good idea to throw it at a friend walking down the sidewalk at you. If you accelerate the balloon from rest over a distance of about 1.7 m during your throw, with what speed will the water balloon leave your hand if $a=2.6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$?
$v_{f x}^{2}=v_{f x}^{2}+2 a_{x} \Delta x$
$v_{f x}=\sqrt{2 a_{x} \Delta x}=\sqrt{2 \times 2.6 \frac{\mathrm{~m}}{s^{2}} \times 1.7 \mathrm{~m}}=2.97 \frac{\mathrm{~m}}{\mathrm{~s}}$

Physics 120 Formulas

Motion
$\Delta x=x_{f}-x_{i}$
$v_{\text {avg }}=\frac{\Delta x}{\Delta t}$
$\boldsymbol{a}_{a v g}=\frac{\Delta v}{\Delta t}$

Equations of Motion
displacement: $\left\{\begin{array}{l}x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \\ y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}\end{array}\right.$
velocity: $\left\{\begin{array}{l}v_{f x}=v_{i x}+a_{x} t \\ v_{f y}=v_{i y}+a_{y} t\end{array}\right.$
time-independent: $\left\{\begin{array}{l}v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x \\ v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y\end{array}\right.$

Uniform Circular Motion
$F_{r}=m a_{r}=m \frac{v^{2}}{r} ; \quad a_{r}=\frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry /Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$
Quadratic equation: $a x^{2}+b x+c=0$,		

whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vectors
magnitude of a vector: $v=|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector: $\phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Work/Energy

Rotational Motion
$K_{t}=\frac{1}{2} m v^{2}$
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$U_{g}=m g h$
$\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$

Simple Harmonic Motion/Waves
$\omega=2 \pi f=\frac{2 \pi}{T}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$T_{P}=2 \pi \sqrt{\frac{l}{g}}$
$v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}$
$x(t)=A \sin \left(\frac{2 \pi t}{T}\right)$
$v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right)$
$a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)$
$v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}$
$f_{n}=n f_{1}=n \frac{v}{2 L}$
$I=2 \pi^{2} f^{2} \rho v A^{2}$

