Name \qquad
Physics 120 Quiz \#3, February 4, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

The Blue Angels are a military flight demonstration team representing the US Navy and Marine Corps. They have a transport aircraft which often is part of the flight demonstration and is affectionally known as Fat Albert, shown below.

Suppose that the pilots of Fat Albert perform a maneuver for the airshow attendees where they fly the plane in a horizontal circle of radius $R=1600 \mathrm{~m}(\sim 1$ mile $)$ at a constant speed of v by tilting the wings of the airplane through an angle ϕ measured with respect to the vertical.

1. For this maneuver, what is the constant speed v of Fat Albert, if it takes the airplane 2.25 minutes to fly one time around in a horizontal circle?

$$
v=\frac{2 \pi r}{t}=\frac{2 \pi \times 1600 \mathrm{~m}}{2.25 \mathrm{~min} \times \frac{60 \sec }{1 \mathrm{~min}}}=74.5 \frac{\mathrm{~m}}{\mathrm{~s}}\left(\sim 168 \frac{\mathrm{mi}}{\mathrm{hr}}\right)
$$

When the plane flies, airflow over the wings of the plane generates a force perpendicular to the wings of the airplane. We call this force $\vec{F}_{\text {lift }}$ and is always perpendicular to the wings of the plane as shown above.
2. Assuming a standard Cartesian coordinate system, what is the vector sum of the forces that act on the airplane, $\vec{F}_{n e t}$? Set this result equal to $m \vec{a}$. Make sure you fill in the components of each vector in $\vec{F}_{n e t}$ with appropriate expressions and ignore air resistance.
$\vec{F}_{n e t}=\vec{F}_{l i f t}+\vec{F}_{w}=\left\langle-F_{\text {lift }} \sin \phi, F_{l i f t} \cos \phi, 0\right\rangle+\langle 0,-m g, 0\rangle$
$\vec{F}_{n e t}=m \vec{a} \rightarrow\left\langle-F_{\text {lift }} \sin \phi, F_{\text {lift }} \cos \phi-m g\right\rangle=\left\langle-\frac{m v^{2}}{r}, 0,0\right\rangle$
3. What is the expressions of Newton's law of motion in the x - or horizontal direction? What is the expression of Newton's law of motion in the y - or vertical direction?

Horizontal forces:
$-F_{\text {lift }} \sin \phi=-\frac{m v^{2}}{r}$
Vertical forces:

$$
F_{l i f t} \cos \phi-m g=0
$$

4. At what angle ϕ measured with respect to the vertical did the pilots tilt the plane?

$$
\begin{aligned}
& \rightarrow F_{l i f t}=\frac{m g}{\cos \phi} \\
& \rightarrow F_{l i f t} \sin \phi=m g \tan \phi=m \frac{v^{2}}{R} \rightarrow \tan \phi=\frac{v^{2}}{R g}=\frac{\left(74.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{1600 \mathrm{~m} \times 9.8 \frac{\mathrm{~m}}{s^{2}}}=0.3540 \\
& \rightarrow \phi=19.5^{0}
\end{aligned}
$$

5. What is the magnitude of the lifting force in terms of the weight of the airplane?

$$
F_{\text {lift }}=\frac{m g}{\cos \phi}=\frac{F_{W}}{\cos \phi}=\frac{F_{W}}{\cos 19.5}=1.06 F_{W}
$$

Physics 120 Formula Sheet

General Definitions of Motion
$\Delta \vec{r}=\langle\Delta x, \Delta y, \Delta z\rangle=\left\langle x_{f}-x_{i}, y_{f}-y, z_{f}-z_{i}\right\rangle$
$\vec{v}=\frac{\Delta \vec{r}}{\Delta t}=\left\langle\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}, \frac{\Delta z}{\Delta t}\right\rangle$
$\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\left\langle\frac{\Delta v_{x}}{\Delta t}, \frac{\Delta v_{y}}{\Delta t}, \frac{\Delta v_{z}}{\Delta t}\right\rangle$
$d \vec{r}=\langle d x, d y, d z\rangle$
$\vec{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle=\frac{d \vec{r}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$
$\vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=\frac{d \vec{v}}{d t}=\left\langle\frac{d v_{x}}{d t}, \frac{d v_{y}}{d t}, \frac{d v_{z}}{d t}\right\rangle$
Motion with constant acceleration
$\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2} \rightarrow\left\langle x_{f}, y, z_{f}\right\rangle=\left\langle x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}, y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}, z+v_{i z} t+\frac{1}{2} a_{z} t^{2}\right\rangle$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t \rightarrow\left\langle v_{f x}, v_{f y}, v_{f z}\right\rangle=\left\langle v_{i x}+a_{x} t, v_{i y}+a_{y} t, v_{i z}+a_{z} t\right\rangle$

Forces/Momentum
$\vec{p}=m \vec{v}$
$\vec{F}_{n e t}=\frac{d \vec{p}}{d t}=m \vec{a}$
$\vec{p}_{f}-\vec{p}_{i}=\int d \vec{p}=\int \vec{F}_{n e t} d t$
$\vec{J}=\int \vec{F}_{n e t} d t$
$\vec{F}_{n e t}=\vec{F}_{\|}+\vec{F}_{\perp}=\frac{d \vec{p}}{d t} \hat{p}+\vec{p} \frac{d \hat{p}}{d t}=m \vec{a}_{\|}+m \vec{a}_{\perp}$
$\left|\vec{F}_{\perp}\right|=m\left|\vec{a}_{\perp}\right|=m \frac{v^{2}}{r}$
$\vec{F}_{G}=G \frac{M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12} \rightarrow\left|\vec{F}_{G}\right|=G \frac{M_{1} M_{2}}{r_{12}^{2}}$
$\vec{F}_{G}=m \vec{g} ; \quad \vec{g}=G \frac{M_{c b}}{\left(R_{c b}+h\right)} \hat{r}$
$\left|\vec{F}_{f r}\right|=\mu\left|\vec{F}_{N}\right|$
$\vec{F}_{S}=-k \Delta \vec{r}$
Vectors
$\vec{C}=\vec{A}+\vec{B} \rightarrow\left\langle C_{x}, C_{y}, C_{z}\right\rangle=\left\langle A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}\right\rangle+\left\langle C_{x}, C_{y}, C_{z}\right\rangle ; \overrightarrow{|C|}=\sqrt{C_{x}^{2}+C_{y}^{2}+C_{z}^{2}}$
$\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
$\vec{A} \times \vec{B}=|\vec{A}||\vec{B}| \sin \theta=\left\langle a_{y} b_{z}-b_{y} a_{z}, a_{z} b_{x}-b_{z} a_{x}, a_{x} b_{y}-b_{x} a_{y}\right\rangle$

Geometry
$C=2 \pi r A_{\text {circle }}=\pi r^{2} ; A_{\text {rect }}=L W$
$A_{\text {triangle }}=\frac{1}{2} b h ; A_{\text {sphere }}=4 \pi r^{2}$
$V_{\text {sphere }}=\frac{4}{3} \pi r^{3} ; \quad V_{\text {cyl }}=\pi r^{2} h ; \quad V_{\text {cone }}=\frac{1}{3} \pi r^{2} h$

Work and Energy
$W_{T}=\int d W_{T}=\int \vec{F} \cdot d \vec{r}=\Delta K_{T}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{p_{f}^{2}}{2 m}-\frac{p_{i}^{2}}{2 m}$
$W_{R}=\int d W_{R}=\int \vec{\tau} \cdot d \vec{\theta}=\Delta K_{R}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=\frac{L_{f}^{2}}{2 I}-\frac{L_{i}^{2}}{2 I}$
$W_{n e t}=W_{T}+W_{R}=\Delta E_{s y s}=\left\{\begin{array}{c}0 \\ W_{f r}\end{array}\right.$
$W_{n e t}=-\sum \Delta U=\Delta K_{T}+\Delta K_{R}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k x^{2}$
Rotational Motion
$s=r \theta \rightarrow d s=r d \theta$
$\frac{d s}{d t}=r \frac{d \theta}{d t} \rightarrow v=r \omega ; \quad \omega=\frac{d \theta}{d t}$
$a=\frac{d v}{d t}=r \frac{d \omega}{d t}=r \alpha ; \quad \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$
Rotational Forces/Momentum
$\vec{\tau}=\vec{r} \times \vec{F}=\frac{d \vec{L}}{d t}=I \vec{\alpha}$
$|\vec{\tau}|=r F \sin \theta=r_{\perp} F=r F_{\perp}$
$\vec{L}=I \vec{\omega}$
$I=\int r^{2} d m$
$\vec{L}_{f}=\vec{L}_{i}+\int \vec{\tau}_{n e t} d t$

Some moments of inertia from Halliday, Resnick, \& Walker, $10^{\text {th }}$ edition.

