Name
Physics 110 Quiz \#4, February 7, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

The Earth revolves about the Sun in a nearly circular orbit with radius $r_{E S}=1.5 \times 10^{11} \mathrm{~m}$, due to the gravitational interaction between the Earth and the Sun. (The sun also undergoes a small circular orbit due to same gravitational interaction but the orbit of the Sun is within the Sun itself.) The gravitational interaction is given by $\left|\vec{F}_{G}\right|=G \frac{M_{E} M_{S}}{r_{E S}^{2}}$, where $G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \text {. }}$
a. What is the (assumed) constant speed of the Earth in orbit, if the period of Earth's orbit about the Sun is $T=365.25$ days $=31.5 \times 10^{6} s$?

$$
v=\frac{2 \pi r_{E S}}{T}=\frac{2 \pi\left(1.5 \times 10^{11} \mathrm{~m}\right)}{31.5 \times 10^{6} \mathrm{~s}}=3 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

b. What is the mass of the Sun?

$$
\left|\vec{F}_{G}\right|=G \frac{M_{E} M_{S}}{r_{E S}^{2}}=M_{E} \frac{v^{2}}{r_{E S}} \rightarrow M_{S}=\frac{v^{2} r_{E S}}{G}=\frac{\left(3 \times 10^{4} \frac{\mathrm{~m}}{s}\right)^{2} \times 1.5 \times 10^{11} \mathrm{~m}}{6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}}=2 \times 10^{30} \mathrm{~kg}
$$

A little closer to home suppose that you are flying a remote-controlled airplane that has a mass of $m=1.5 \mathrm{~kg}$ attached to a 2 m long string (you're holding the other end) and the plane is flown in a horizontal circle at a constant speed. The string makes a 20° angle with respect to the vertical and the plane takes 1.5 s to complete one circular orbit. The airflow over the wings of the plane generates a lifting force $\vec{F}_{\text {lift }}$ that is always perpendicular to the wings of the plane.
c. What is the magnitude of the lifting force $\left|\vec{F}_{\text {lift }}\right|$?

From the geometry in the problem we can calculate the radius of the circular motion.
$\sin \theta=\frac{r}{L} \rightarrow r=L \sin \theta$
The speed of the constant speed of the plane is given by $v=\frac{2 \pi r}{T}=\frac{2 \pi L \sin \theta}{T}$
$\vec{F}_{\text {net }}=\vec{F}_{\text {lift }}+\vec{F}_{\text {tension }}+\vec{F}_{\text {weight }}=\left\langle 0, F_{\text {lift }}, 0\right\rangle+\left\langle F_{T} \sin \theta,-F_{T} \cos \theta, 0\right\rangle+\langle 0,-m g, 0\rangle=m \vec{a}$
x -direction
$F_{T} \sin \theta=m a_{x}=m \frac{v^{2}}{r} \rightarrow F_{T}=\frac{m v^{2}}{r \sin \theta}=\frac{4 \pi^{2} m L^{2} \sin ^{2} \theta}{L T^{2} \sin ^{2} \theta}=\frac{4 \pi^{2} m L}{T^{2}}$
y-direction
$F_{l i f t}-\mathrm{F}_{T} \cos \theta-m g=m a_{y}=0 \rightarrow F_{\text {lift }}=\mathrm{F}_{T} \cos \theta+m g=\frac{4 \pi^{2} m L}{T^{2}} \cos \theta+m g$
$F_{l i f t}=\frac{4 \pi^{2} m L}{T^{2}} \cos \theta+m g=\frac{4 \pi^{2} \times 1.5 \mathrm{~kg} \times 2 \mathrm{~m}}{(1.5 \mathrm{~s})^{2}} \cos 20+\left(1.5 \mathrm{~kg} \times 9.8 \frac{m}{s^{2}}\right)=64.1 \mathrm{~N}$
d. What is the magnitude of the tension force $\left|\vec{F}_{T}\right|$ in the string?

$$
F_{T}=\frac{4 \pi^{2} m L}{T^{2}}=\frac{4 \pi^{2} \times 1.5 \mathrm{~kg} \times 2 \mathrm{~m}}{(1.5 \mathrm{~s})^{2}}=52.6 \mathrm{~N}
$$

Physics 120 Formula Sheet

General Definitions of Motion
$d \vec{r}=\langle d x, d y, d z\rangle=\left\langle x_{f}-x_{i}, y_{f}-y, z_{f}-z_{i}\right\rangle$
$\vec{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle=\frac{d \vec{r}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$
$\vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=\frac{d \vec{v}}{d t}=\left\langle\frac{d v_{x}}{d t}, \frac{d v_{y}}{d t}, \frac{d v_{z}}{d t}\right\rangle$

Geometry

$$
C=2 \pi r \quad A_{\text {circle }}=\pi r^{2} ; A_{\text {rect }}=L W
$$

$$
A_{\text {triangle }}=\frac{1}{2} b h ; \quad A_{\text {sphere }}=4 \pi r^{2}
$$

$V_{\text {sphere }}=\frac{4}{3} \pi r^{3} ; \quad V_{\text {cyl }}=\pi r^{2} h ; \quad V_{\text {cone }}=\frac{1}{3} \pi r^{2} h$

Motion with constant acceleration
$\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2} \rightarrow\left\langle x_{f}, y, z_{f}\right\rangle=\left\langle x_{i}+v_{i x t}+\frac{1}{2} a_{x} t^{2}, y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}, z+v_{i z} t+\frac{1}{2} a_{z} t^{2}\right\rangle$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t \rightarrow\left\langle v_{f x}, v_{f y}, v_{f z}\right\rangle=\left\langle v_{i x}+a_{x} t, v_{i y}+a_{y} t, v_{i z}+a_{z} t\right\rangle$

Forces
$\vec{p}=m \vec{v}$
$\vec{F}_{n e t}=\frac{d \vec{p}}{d t}=m \vec{a}$
$\vec{p}_{f}-\vec{p}_{i}=\int d \vec{p}=\int \vec{F}_{n e t} d t$
$\vec{F}_{n e t}=\vec{F}_{\|}+\vec{F}_{\perp}=\frac{d p}{d t} \hat{p}+p \frac{d \hat{p}}{d t}=m \vec{a}_{\|}+m \vec{a}_{\perp}$
$\left|\vec{F}_{\perp}\right|=m\left|\vec{a}_{\perp}\right|=m \frac{v^{2}}{r}$
$\vec{F}_{G}=G \frac{M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12} \rightarrow\left|\vec{F}_{G}\right|=G \frac{M_{1} M_{2}}{r_{12}^{2}}$
$\vec{F}_{G}=m \vec{g} ; \quad \vec{g}=G \frac{M_{c b}}{\left(R_{c b}+h\right)} \hat{r}$
$\left|\vec{F}_{f r}\right|=\mu\left|\vec{F}_{N}\right|$
$\vec{F}_{S}=-k \Delta \vec{r}$

Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} ; \quad G=6.67 \times 10^{-11 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}}$
$v_{\text {sound }}=343 \frac{\mathrm{~m}}{\mathrm{~s}} ; \quad v_{\text {light }}=c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$N_{A}=6.02 \times 10^{23}$

Vectors
$\vec{C}=\vec{A}+\vec{B} \rightarrow\left\langle C_{x}, C_{y}, C_{z}\right\rangle=\left\langle A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}\right\rangle+\left\langle C_{x}, C_{y}, C_{z}\right\rangle ; \quad \overrightarrow{|C|}=\sqrt{C_{x}^{2}+C_{y}^{2}+C_{z}^{2}}$
$\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
$\vec{A} \times \vec{B}=|\vec{A}||\vec{B}| \sin \theta=\langle,$,
Work and Energy

$$
\begin{aligned}
& W_{T}=\int d W_{T}=\int \vec{F} \cdot d \vec{r}=\Delta K_{T}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \\
& W_{R}=\int d W_{T R}=\int \vec{\tau} \cdot d \vec{\theta}=\Delta K_{R}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I v \omega_{i}^{2} \\
& W_{n e t}=W_{T}+W_{R}=\Delta E_{\text {sys }}=\left\{\begin{array}{c}
0 \\
-W_{f r}
\end{array}\right. \\
& W_{n e t}=-\sum \Delta U=\Delta K_{T}+\Delta K_{R} \\
& U_{g}=m g y \\
& U_{s}=\frac{1}{2} k x^{2}
\end{aligned}
$$

