Name \qquad
Physics 120 Quiz \#4, February 11, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A crate of mass $m_{\text {crate }}=10 \mathrm{~kg}$ is pulled up a rough $\operatorname{ramp}\left(\theta=30^{\circ}\right)$ with an initial speed of $v_{i}=$ $1.5 \frac{\mathrm{~m}}{\mathrm{~s}}$. The pulling force up the ramp has a magnitude of $F=100 \mathrm{~N}$ and is oriented at an angle of $\phi=20^{\circ}$ measured with respect to the ramp. The coefficient of friction is $\mu=0.4$ and the crate is pulled a distance of $d=5 \mathrm{~m}$ along the ramp.

1. How much work was done by the gravitational force?

$$
W_{\text {gravity }}=\int F_{W x} d x \cos 180=-m g d \sin \theta=-10 \mathrm{~kg} \times 9.8 \frac{m}{\bar{s}^{2}} \times 5 \mathrm{~m} \times \sin 30=-245 \mathrm{~J}
$$

2. How much energy is lost (or work was done) by friction?
$W_{f r}=\int F_{f r} d x \cos 180=-F_{f r} d=-\mu F_{N} d$
Where, in the vertical direction: $F_{N}-m g \cos \theta+F \sin \phi=m a_{y}=0$
$F_{N}=m g \cos \theta-F \sin \phi$
$W_{f r}=-\mu(m g \cos \theta-F \sin \phi) d$
$W_{f r}=-0.4\left(10 \mathrm{~kg} \times 9.8 \frac{m}{s^{2}} \cos 30-100 \mathrm{~N} \sin 20\right) \times 5 \mathrm{~m}=-101.3 \mathrm{~J}$
3. How much work was done by the pulling force?

$$
W_{F}=\int F d x \cos \phi=F d \cos \phi=100 N \times 5 m \times \cos 20=469.8 J
$$

4. What is the change in kinetic energy of the crate?

$$
\begin{aligned}
& W_{\text {net }}=W_{f r}+W_{\text {gravity }}+W_{F_{N}}+W_{F}=\Delta K \\
& W_{\text {net }}=\Delta K=-101.3 \mathrm{~J}-245 \mathrm{~J}+469.8 \mathrm{~J}=123.6 \mathrm{~J}
\end{aligned}
$$

5. What tis the final speed of the crate?

$$
\begin{aligned}
& \Delta K=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \rightarrow v_{f}=\sqrt{v_{i}^{2}+\frac{2 \Delta K}{m}} \\
& v_{f}=\sqrt{v_{i}^{2}+\frac{2 \Delta K}{m}}=\sqrt{\left(1.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\frac{2 \times 123.6 \mathrm{~J}}{10 \mathrm{~kg}}}=5.2 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Physics 120 Formula Sheet

General Definitions of Motion
$\Delta \vec{r}=\langle\Delta x, \Delta y, \Delta z\rangle=\left\langle x_{f}-x_{i}, y_{f}-y, z_{f}-z_{i}\right\rangle$
$\vec{v}=\frac{\Delta \vec{r}}{\Delta t}=\left\langle\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}, \frac{\Delta z}{\Delta t}\right\rangle$
$\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\left\langle\frac{\Delta v_{x}}{\Delta t}, \frac{\Delta v_{y}}{\Delta t}, \frac{\Delta v_{z}}{\Delta t}\right\rangle$
$d \vec{r}=\langle d x, d y, d z\rangle$
$\vec{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle=\frac{d \vec{r}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$
$\vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=\frac{d \vec{v}}{d t}=\left\langle\frac{d v_{x}}{d t}, \frac{d v_{y}}{d t}, \frac{d v_{z}}{d t}\right\rangle$

Geometry

$$
\begin{aligned}
& C=2 \pi r A_{\text {circle }}=\pi r^{2} ; A_{\text {rect }}=L W \\
& A_{\text {triangle }}=\frac{1}{2} b h ; \quad A_{\text {sphere }}=4 \pi r^{2} \\
& V_{\text {sphere }}=\frac{4}{3} \pi r^{3} ; \quad V_{\text {cyl }}=\pi r^{2} h ; \quad V_{\text {cone }}=\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

Motion with constant acceleration
$\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2} \rightarrow\left\langle x_{f}, y, z_{f}\right\rangle=\left\langle x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}, y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}, z+v_{i z} t+\frac{1}{2} a_{z} t^{2}\right\rangle$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t \rightarrow\left\langle v_{f x}, v_{f y}, v_{f z}\right\rangle=\left\langle v_{i x}+a_{x} t, v_{i y}+a_{y} t, v_{i z}+a_{z} t\right\rangle$

Forces/Momentum
$\vec{p}=m \vec{v}$
$\vec{F}_{n e t}=\frac{d \vec{p}}{d t}=m \vec{a}$
$\vec{p}_{f}-\vec{p}_{i}=\int d \vec{p}=\int \vec{F}_{n e t} d t$
$\vec{J}=\int \vec{F}_{n e t} d t$
$\vec{F}_{n e t}=\vec{F}_{\|}+\vec{F}_{\perp}=\frac{d \vec{p}}{d t} \hat{p}+\vec{p} \frac{d \hat{p}}{d t}=m \vec{a}_{\|}+m \vec{a}_{\perp}$
$\left|\vec{F}_{\perp}\right|=m\left|\vec{a}_{\perp}\right|=m \frac{v^{2}}{r}$
$\vec{F}_{G}=G \frac{M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12} \rightarrow\left|\vec{F}_{G}\right|=G \frac{M_{1} M_{2}}{r_{12}^{2}}$
$\vec{F}_{G}=m \vec{g} ; \quad \vec{g}=G \frac{M_{c b}}{\left(R_{c b}+h\right)} \hat{r}$
$\left|\vec{F}_{f r}\right|=\mu\left|\vec{F}_{N}\right|$
$\vec{F}_{S}=-k \Delta \vec{r}$
Vectors
$\vec{C}=\vec{A}+\vec{B} \rightarrow\left\langle C_{x}, C_{y}, C_{z}\right\rangle=\left\langle A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}\right\rangle+\left\langle C_{x}, C_{y}, C_{z}\right\rangle ; \quad \overrightarrow{C \mid}=\sqrt{C_{x}^{2}+C_{y}^{2}+C_{z}^{2}}$
$\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
$\vec{A} \times \vec{B}=|\vec{A}||\vec{B}| \sin \theta=\left\langle a_{y} b_{z}-b_{y} a_{z}, a_{z} b_{x}-b_{z} a_{x}, a_{x} b_{y}-b_{x} a_{y}\right\rangle$

Work and Energy
$W_{T}=\int d W_{T}=\int \vec{F} \cdot d \vec{r}=\Delta K_{T}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{p_{f}^{2}}{2 m}-\frac{p_{i}^{2}}{2 m}$
$W_{R}=\int d W_{R}=\int \vec{\tau} \cdot d \vec{\theta}=\Delta K_{R}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=\frac{L_{f}^{2}}{2 I}-\frac{L_{i}^{2}}{2 I}$
$W_{n e t}=W_{T}+W_{R}=\Delta E_{s y s}=\left\{\begin{array}{c}0 \\ W_{f r}\end{array}\right.$
$W_{n e t}=-\sum \Delta U=\Delta K_{T}+\Delta K_{R}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k x^{2}$
Rotational Motion
$s=r \theta \rightarrow d s=r d \theta$
$\frac{d s}{d t}=r \frac{d \theta}{d t} \rightarrow v=r \omega ; \quad \omega=\frac{d \theta}{d t}$
$a=\frac{d v}{d t}=r \frac{d \omega}{d t}=r \alpha ; \quad \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$
Rotational Forces/Momentum
$\vec{\tau}=\vec{r} \times \vec{F}=\frac{d \vec{L}}{d t}=I \vec{\alpha}$
$|\vec{\tau}|=r F \sin \theta=r_{\perp} F=r F_{\perp}$
$\vec{L}=I \vec{\omega}$
$I=\int r^{2} d m$
$\vec{L}_{f}=\vec{L}_{i}+\int \vec{\tau}_{\text {net }} d t$

Some moments of inertia from Halliday, Resnick, \& Walker, $10^{\text {th }}$ edition.

