Name
Physics 120 Quiz 5, May 20, 2011
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. An electron is traveling at a speed of $v_{i e}=0.99 c$ when it encounters a region where there is a constant electric force directed opposite to its momentum. After traveling a distance d in this region, the electrons speed was observed to decrease to $v_{f e}=0.93 c$. How much work was done by the electric force slowing the electron down?
a. $W=\left(\gamma_{f}-\gamma_{i}\right) m_{e} c^{2}$
b. $W=\frac{1}{2} m_{e}\left(v_{f e}^{2}-v_{i e}^{2}\right)-2 m_{e} c^{2}$
c. $W=\left(\gamma_{f}-\gamma_{i}-2\right) m_{e} c^{2}$
d. $W=\frac{1}{2} m_{e}\left(v_{f e}^{2}-v_{i e}^{2}\right)$

2a. Sodium-24 is radioactive and when it decays there is an emission of a beta particle (a high speed electron) and the sodium nucleus transmutates to a magnesium nucleus. The decay sequence for the beta decay of sodium is given as ${ }_{11}^{24} \mathrm{Na} \rightarrow{ }_{-1}^{0} e+{ }_{12}^{24} \mathrm{Mg}$. Applying the energy and momentum principles, what is the speed of the beta particle if the ${ }^{24} \mathrm{Na}$ is at rest when the beta particle is emitted? (Hints: Assume that the beta particle and the magnesium nucleus move at non-relativistic speeds and take the rest mass of ${ }^{24} \mathrm{Na}$ to be 23.98492 u , the electron $5.49 \times 10^{-4} \mathrm{u}$, and ${ }^{24} \mathrm{Mg} 23.97845$ and where an atomic mass unit, $1 u=1.66 \times 10^{-27} \mathrm{~kg}$.)

2b. What is the speed of the recoiling ${ }^{24} M g$?

Useful formulas:
$\vec{p}=\gamma m \vec{v} \quad k_{\text {eff ,parallel }}=n_{\text {parallel }} k_{\text {individual }}$
$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$\vec{v}_{\text {avg }}=\frac{\vec{v}_{i}+\vec{v}_{f}}{2} \quad$ stress $=$ Ystrain $\rightarrow \frac{F}{A}=Y \frac{\Delta L}{L}$
$\vec{F}_{g}=m \vec{g}$
$\vec{F}_{\text {gravity }}=\frac{G M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{F}_{\text {spring }}=-k \vec{s} ; \quad \vec{s}=\left(L-L_{o}\right) \hat{s}$
$W=\int \vec{F} \cdot d \vec{r}=\Delta K E=-\Delta U$
$U_{g}=-\frac{G M_{1} M_{2}}{r}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k s^{2}$
$K E=\frac{1}{2} m v^{2}$
$K E=(\gamma-1) m c^{2}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F}_{n e t} \Delta t ; \quad \Delta t=$ large
Momentum Principle:

$$
\vec{p}_{f}=\vec{p}_{i}+\vec{F}_{n e t} d t ; \quad d t=\frac{\Delta t}{n}=\text { small }
$$

Position-update:

$$
\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{\text {avg }} \Delta t=\vec{r}_{i}+\frac{\vec{p}}{m \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}} \Delta t ; \quad \Delta t=\text { large }
$$

$$
\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{f} d t ; \quad d t=\frac{\Delta t}{n}=\text { small }
$$

$$
\Delta E=W=\Delta U_{g}+\Delta U_{s}+\Delta K E
$$

Energy principle:
Geometry /Algebra
Circles Triangles Spheres
$C=2 \pi r \quad A=\frac{1}{2} b h \quad A=4 \pi r^{2}$
$A=\pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$
Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given $b y: x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vectors
magnitude of a vector: $|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$
writing a vector: $\quad \vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=|\vec{a}| \hat{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$

Useful Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{Nm}{ }^{2}}{\mathrm{C}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{7 m}{\mathrm{~A}}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{JS}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

