Name
Physics 120 Quiz \#6, February 21, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A cart of mass $m_{\text {cart }}=0.60 \mathrm{~kg}$ is attached to a hanging mass $m_{h}=0.25 \mathrm{~kg}$ by a light rope passing over a massless pulley. The hanging mass is released from rest, as shown below. The horizontal surface is considered frictionless unless otherwise specified.

a. What is the change in gravitational potential energy of the system of the two masses $m_{\text {cart }}$ and m_{h} after the hanging mass m_{h} falls a distance of $\Delta y=1.2 m$?

$$
\begin{aligned}
& \Delta U_{g}=\Delta U_{g 1}+\Delta U_{g 2}=\left(m_{c a r t} g y_{f, c a r t}-m_{c a r t} g y_{i, c a r t}\right)+\left(m_{h} g y_{f, h}-m_{h} g y_{i, h}\right) \\
& \Delta U_{g}=\left(m_{h} g y_{f, h}-m_{h} g y_{i, h}\right)=-m_{h} g y_{i, h}=-0.25 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.2 \mathrm{~m}=-2.94 \mathrm{~J}
\end{aligned}
$$

b. If the horizontal surface is frictionless, what is the change in kinetic energy of the cart and hanging mass system?

$$
\begin{aligned}
& \Delta E_{\text {system }}=\Delta K_{\text {cart }}+\Delta K_{h}+\Delta U_{g, \text { cart }}+\Delta U_{g, h}=\Delta K_{\text {cart }}+\Delta K_{h}+\Delta U_{g, h}=0 \\
& \rightarrow \Delta K_{\text {cart }}+\Delta K_{h}=-\Delta U_{g, h}=2.94 \mathrm{~J}
\end{aligned}
$$

c. If the horizontal surface is frictionless, what is the speed of the hanging mass m_{h} after it falls a distance of $\Delta y=1.2 m$?

$$
\begin{aligned}
& \Delta K_{c a r t}+\Delta K_{h}=\left(\frac{1}{2} m_{c a r t} v_{f, c a r t}^{2}-\frac{1}{2} m_{c a r t} v_{i, c a r t}^{2}\right)+\left(\frac{1}{2} m_{h} v_{f, h}^{2}-\frac{1}{2} m_{h} v_{i, h}^{2}\right)=-\Delta U_{g, h} \\
& \frac{1}{2} m_{c a r t} v_{f, c a r t}^{2}+\frac{1}{2} m_{h} v_{f, h}^{2}=\frac{1}{2}\left(m_{c a r t}+m_{h}\right) v_{f}^{2}=-\Delta U_{g, h} \\
& \rightarrow v_{f}=\sqrt{\frac{-2 \times \Delta U_{g, h}}{m_{c a r t}+m_{h}}}=\sqrt{\frac{-2 \times(-2.94 J)}{0.60 k g+0.25 k g}}=2.6 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

d. Suppose that there is friction between the cart and the horizontal surface, with coefficient of friction $\mu_{k}=0.3$. What is the speed of the hanging mass m_{h} in this case, after it falls a distance of $\Delta y=$ $1.2 m$ after being released from rest?

$$
\begin{aligned}
& \Delta E_{\text {system }}=\Delta K_{\text {cart }}+\Delta K_{h}+\Delta U_{g, h}=W_{f r}=-\mu_{k} F_{N} x \\
& -\mu_{k} m_{\text {cart }} g x=-\mu_{k} m_{\text {cart }} g y=\frac{1}{2} m_{\text {cart }} v_{f}^{2}+\frac{1}{2} m_{h} v_{f}^{2}+-m_{h} g y \\
& \frac{1}{2}\left(m_{\text {cart }}+m_{h}\right) v_{f}^{2}=m_{h} g y-\mu_{k} m_{\text {cart }} g y=\left(m_{h}-\mu_{k} m_{\text {cart }}\right) g y \\
& v_{f}=\sqrt{\frac{2\left(m_{h}-\mu_{k} m_{c a r t}\right) g y}{m_{c a r t}+m_{h}}}=\sqrt{\frac{2(0.25 \mathrm{~kg}-0.3 \times 0.6 \mathrm{~kg}) \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 1.2 \mathrm{~m}}{0.25 \mathrm{~kg}+0.6 \mathrm{~kg}}}=1.4 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

e. Consider the graph shown on right of the potential energy of a particle of mass m moving in one dimension as a function of distance. If the particle is released from rest at a location r_{o} and moves between r_{o} and $3 r_{o}$, the speed of the particle is most likely given by which of the following?

1. $v=\sqrt{\frac{3 U_{0}}{2 m}}$.

2. $v=\sqrt{\frac{4 U_{0}}{m}}$.
3. $v=\sqrt{\frac{6 U_{0}}{m}}$.
4. $v=\sqrt{\frac{U_{0}}{m}}$.
(5.) $v=\sqrt{\frac{2 U_{0}}{m}}$.

Physics 120 Formula Sheet

General Definitions of Motion
$\Delta \vec{r}=\langle\Delta x, \Delta y, \Delta z\rangle=\left\langle x_{f}-x_{i}, y_{f}-y, z_{f}-z_{i}\right\rangle$
$\vec{v}=\frac{\Delta \vec{r}}{\Delta t}=\left\langle\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}, \frac{\Delta z}{\Delta t}\right\rangle$
$\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\left\langle\frac{\Delta v_{x}}{\Delta t}, \frac{\Delta v_{y}}{\Delta t}, \frac{\Delta v_{z}}{\Delta t}\right\rangle$
$d \vec{r}=\langle d x, d y, d z\rangle$
$\vec{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle=\frac{d \vec{r}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$
$\vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=\frac{d \vec{v}}{d t}=\left\langle\frac{d v_{x}}{d t}, \frac{d v_{y}}{d t}, \frac{d v_{z}}{d t}\right\rangle$

Geometry
$C=2 \pi r \quad A_{\text {circle }}=\pi r^{2} ; A_{\text {rect }}=L W$
$A_{\text {triangle }}=\frac{1}{2} b h ; A_{\text {sphere }}=4 \pi r^{2}$
$V_{\text {sphere }}=\frac{4}{3} \pi r^{3} ; V_{\text {cyl }}=\pi r^{2} h ; \quad V_{\text {cone }}=\frac{1}{3} \pi r^{2} h$

Motion with constant acceleration
$\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2} \rightarrow\left\langle x_{f}, y, z_{f}\right\rangle=\left\langle x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}, y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}, z+v_{i z} t+\frac{1}{2} a_{z} t^{2}\right\rangle$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t \rightarrow\left\langle v_{f x}, v_{f y}, v_{f z}\right\rangle=\left\langle v_{i x}+a_{x} t, v_{i y}+a_{y} t, v_{i z}+a_{z} t\right\rangle$
Forces/Momentum
$\vec{p}=m \vec{v}$
$\vec{F}_{n e t}=\frac{d \vec{p}}{d t}=m \vec{a}$
$\vec{p}_{f}-\vec{p}_{i}=\int d \vec{p}=\int \vec{F}_{n e t} d t$
$\vec{J}=\int \vec{F}_{n e t} d t$
$\vec{F}_{n e t}=\vec{F}_{\|}+\vec{F}_{\perp}=\frac{d p}{d t} \hat{p}+p \frac{d \hat{p}}{d t}=m \vec{a}_{\|}+m \vec{a}_{\perp}$
$\left|\vec{F}_{\perp}\right|=m\left|\vec{a}_{\perp}\right|=m \frac{v^{2}}{r}$
$\vec{F}_{G}=G \frac{M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12} \rightarrow\left|\vec{F}_{G}\right|=G \frac{M_{1} M_{2}}{r_{12}^{2}}$
$\vec{F}_{G}=m \vec{g} ; \quad \vec{g}=G \frac{M_{c b}}{\left(R_{c b}+h\right)} \hat{r}$
$\left|\vec{F}_{f r}\right|=\mu\left|\vec{F}_{N}\right|$
$\vec{F}_{s}=-k \Delta \vec{r}$
Vectors
$\vec{C}=\vec{A}+\vec{B} \rightarrow\left\langle C_{x}, C_{y}, C_{z}\right\rangle=\left\langle A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}\right\rangle+\left\langle C_{x}, C_{y}, C_{z}\right\rangle ; \overrightarrow{|C|}=\sqrt{C_{x}^{2}+C_{y}^{2}+C_{z}^{2}}$
$\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
$\vec{A} \times \vec{B}=|\vec{A}||\vec{B}| \sin \theta=\left\langle a_{y} b_{z}-b_{y} a_{z}, a_{z} b_{x}-b_{z} a_{x}, a_{x} b_{y}-b_{x} a_{y}\right\rangle$

Work and Energy
$W_{T}=\int d W_{T}=\int \vec{F} \cdot d \vec{r}=\Delta K_{T}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{p_{f}^{2}}{2 m}-\frac{p_{i}^{2}}{2 m}$
$W_{R}=\int d W_{R}=\int \vec{\tau} \cdot d \vec{\theta}=\Delta K_{R}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}$
$W_{n e t}=W_{T}+W_{R}=\Delta E_{\text {sys }}=\left\{\begin{array}{c}0 \\ W_{f r}\end{array}\right.$
$W_{\text {net }}=-\sum \Delta U=\Delta K_{T}+\Delta K_{R}$
$U_{g}=m g y$
$U_{S}=\frac{1}{2} k x^{2}$
Rotational Motion
$s=r \theta \rightarrow d s=r d \theta$
$\frac{d s}{d t}=r \frac{d \theta}{d t} \rightarrow v=r \omega ; \omega=\frac{d \theta}{d t}$
$a=\frac{d v}{d t}=r \frac{d \omega}{d t}=r \alpha ; \quad \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$
Rotational Forces/Momentum
$\vec{\tau}=\vec{r} \times \vec{F}=\frac{d \vec{L}}{d t}=I \vec{\alpha}$
$\tau=r F \sin \theta=r_{\perp} F=r F_{\perp}$
$\vec{L}=I \vec{\omega}$
$I=\int r^{2} d m$
$\vec{L}_{f}=\vec{L}_{i}+\int \vec{\tau}_{n e t} d t$

