Name
Physics 120 Quiz \#7, March 6, 2020
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A pair of long, thin, rods, each of length L and mass M are connected to a hoop of mass M and radius $\frac{L}{2}$ to form a 4 -spoked wheel as shown on the right.

a. Assuming moments of inertia are additive, what is the total
moment of inertia of the 4 -spoked wheel assembly for an axis of rotation through the center of the assembly perpendicular to the plane of the wheel?
$I_{\text {total }}=I_{\text {hoop }}+I_{\text {rod }}+I_{\text {rod }}=M\left(\frac{L}{2}\right)^{2}+\frac{1}{12} M L^{2}+\frac{1}{12} M L^{2}=\frac{5}{12} M L^{2}$
b. Suppose that the 4 -spoked wheel is mounted to a low-friction axle through its center and several turns of light rope are wrapped onto the wheel as shown on the right. A mass M is attached to the assembly and the system is released from rest. What is the tension in the rope attached to the mass as the mass falls?
$\left|\vec{\tau}_{n e t}\right|=\vec{r} \times \vec{F}=\frac{L}{2} F_{T} \sin 90=\frac{L}{2} F_{T}$
$\vec{\tau}_{n e t}=I \vec{\alpha}=\left\langle 0,0,+\frac{L}{2} F_{T}\right\rangle+I\langle 0,0,+\alpha\rangle \rightarrow \frac{L}{2} F_{T}=I \alpha=I\left(\frac{2 a}{L}\right) \rightarrow a=\frac{L^{2} F_{T}}{4 I}$
$\vec{F}_{n e t}=\vec{F}_{T}+\vec{F}_{W}=M \vec{a} \rightarrow\left\langle 0, F_{T}-M g, 0\right\rangle=M\langle 0,-a, 0\rangle \rightarrow F_{T}-M g=-M a \rightarrow a=\frac{M g-F_{T}}{M}$
$a=\frac{L^{2} F_{T}}{4 I}=\frac{M g-F_{T}}{M} \rightarrow F_{T}=\frac{M g}{\left(\frac{M L^{2}}{4 I}+1\right)}=\frac{M g}{\left(\frac{M L^{2}}{4\left(\frac{5}{12} M L^{2}\right)}+1\right)}=\frac{5}{8} M g$
$F_{T}=\frac{5}{8} M g$
c. What is the magnitude of the angular acceleration of the assembly after the wheel has turned one full revolution?

$$
\begin{aligned}
& \tau=I \alpha \rightarrow \alpha=\frac{\tau}{I}=\frac{\frac{L}{2} F_{T}}{I}=\frac{\frac{L}{2}\left(\frac{5}{8} M g\right)}{\frac{5}{12} M L^{2}}=\frac{3 g}{4 L} \\
& \text { Or } a=r \alpha \rightarrow \frac{L^{2} F_{T}}{4 I}=\frac{L^{2}\left(\frac{5}{8} M g\right)}{4\left(\frac{5}{12} M L^{2}\right)}=\frac{12}{32} g=\frac{L}{2} \alpha \rightarrow \alpha=\frac{3 g}{4 L}
\end{aligned}
$$

d. What is the magnitude of the angular velocity of the assembly after the wheel has made one full revolution?

$$
\begin{aligned}
& v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y=2 a_{y} \Delta y=2\left(\frac{12}{32} g\right)\left(2 \pi \frac{L}{2}\right)=\frac{3 \pi g L}{4}=(r \omega)^{2}=\left(\frac{L}{2} \omega\right)^{2} \\
& \frac{L^{2} \omega}{4}=\frac{3 \pi g L}{4} \rightarrow \omega=\sqrt{\frac{3 \pi g}{L}}
\end{aligned}
$$

e. What is the angular momentum of the wheel assembly only, after the wheel has made one full revolution?

$$
L_{\text {wheel }}=I \omega=\frac{5}{12} M L^{2}\left(\sqrt{\frac{3 \pi g}{L}}\right)=\sqrt{\frac{75 \pi g M^{2} L^{4}}{144 L}}=\frac{1}{12} M L \sqrt{75 \pi g L}
$$

Physics 120 Formula Sheet

General Definitions of Motion
$\Delta \vec{r}=\langle\Delta x, \Delta y, \Delta z\rangle=\left\langle x_{f}-x_{i}, y_{f}-y, z_{f}-z_{i}\right\rangle$
$\vec{v}=\frac{\Delta \vec{r}}{\Delta t}=\left\langle\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}, \frac{\Delta z}{\Delta t}\right\rangle$
$\vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\left\langle\frac{\Delta v_{x}}{\Delta t}, \frac{\Delta v_{y}}{\Delta t}, \frac{\Delta v_{z}}{\Delta t}\right\rangle$
$d \vec{r}=\langle d x, d y, d z\rangle$
$\vec{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle=\frac{d \vec{r}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$
$\vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=\frac{d \vec{v}}{d t}=\left\langle\frac{d v_{x}}{d t}, \frac{d v_{y}}{d t}, \frac{d v_{z}}{d t}\right\rangle$

Geometry
$C=2 \pi r \quad A_{\text {circle }}=\pi r^{2} ; A_{\text {rect }}=L W$
$A_{\text {triangle }}=\frac{1}{2} b h ; A_{\text {sphere }}=4 \pi r^{2}$
$V_{\text {sphere }}=\frac{4}{3} \pi r^{3} ; V_{\text {cyl }}=\pi r^{2} h ; \quad V_{\text {cone }}=\frac{1}{3} \pi r^{2} h$

Motion with constant acceleration
$\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2} \rightarrow\left\langle x_{f}, y, z_{f}\right\rangle=\left\langle x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}, y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}, z+v_{i z} t+\frac{1}{2} a_{z} t^{2}\right\rangle$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t \rightarrow\left\langle v_{f x}, v_{f y}, v_{f z}\right\rangle=\left\langle v_{i x}+a_{x} t, v_{i y}+a_{y} t, v_{i z}+a_{z} t\right\rangle$

Forces/Momentum
$\vec{p}=m \vec{v}$
$\vec{F}_{n e t}=\frac{d \vec{p}}{d t}=m \vec{a}$
$\vec{p}_{f}-\vec{p}_{i}=\int d \vec{p}=\int \vec{F}_{n e t} d t$
$\vec{J}=\int \vec{F}_{n e t} d t$
$\vec{F}_{n e t}=\vec{F}_{\|}+\vec{F}_{\perp}=\frac{d \vec{p}}{d t} \hat{p}+\vec{p} \frac{d \hat{p}}{d t}=m \vec{a}_{\|}+m \vec{a}_{\perp}$
$\left|\vec{F}_{\perp}\right|=m\left|\vec{a}_{\perp}\right|=m \frac{v^{2}}{r}$
$\vec{F}_{G}=G \frac{M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12} \rightarrow\left|\vec{F}_{G}\right|=G \frac{M_{1} M_{2}}{r_{12}^{2}}$
$\vec{F}_{G}=m \vec{g} ; \quad \vec{g}=G \frac{M_{c b}}{\left(R_{c b}+h\right)} \hat{r}$
$\left|\vec{F}_{f r}\right|=\mu\left|\vec{F}_{N}\right|$
$\vec{F}_{s}=-k \Delta \vec{r}$
Vectors
$\vec{C}=\vec{A}+\vec{B} \rightarrow\left\langle C_{x}, C_{y}, C_{z}\right\rangle=\left\langle A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}\right\rangle+\left\langle C_{x}, C_{y}, C_{z}\right\rangle ; \overrightarrow{|C|}=\sqrt{C_{x}^{2}+C_{y}^{2}+C_{z}^{2}}$
$\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
$\vec{A} \times \vec{B}=|\vec{A}||\vec{B}| \sin \theta=\left\langle a_{y} b_{z}-b_{y} a_{z}, a_{z} b_{x}-b_{z} a_{x}, a_{x} b_{y}-b_{x} a_{y}\right\rangle$

Work and Energy
$W_{T}=\int d W_{T}=\int \vec{F} \cdot d \vec{r}=\Delta K_{T}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{p_{f}^{2}}{2 m}-\frac{p_{i}^{2}}{2 m}$
$W_{R}=\int d W_{R}=\int \vec{\tau} \cdot d \vec{\theta}=\Delta K_{R}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=\frac{L_{f}^{2}}{2 I}-\frac{L_{i}^{2}}{2 I}$
$W_{\text {net }}=W_{T}+W_{R}=\Delta E_{s y s}=\left\{\begin{array}{c}0 \\ W_{f r}\end{array}\right.$
$W_{n e t}=-\sum \Delta U=\Delta K_{T}+\Delta K_{R}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k x^{2}$
Rotational Motion
$s=r \theta \rightarrow d s=r d \theta$
$\frac{d s}{d t}=r \frac{d \theta}{d t} \rightarrow v=r \omega ; \omega=\frac{d \theta}{d t}$
$a=\frac{d v}{d t}=r \frac{d \omega}{d t}=r \alpha ; \quad \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$
Rotational Forces/Momentum
$\vec{\tau}=\vec{r} \times \vec{F}=\frac{d \vec{L}}{d t}=I \vec{\alpha}$
$|\vec{\tau}|=r F \sin \theta=r_{\perp} F=r F_{\perp}$
$\vec{L}=I \vec{\omega}$
$I=\int r^{2} d m$
$\vec{L}_{f}=\vec{L}_{i}+\int \vec{\tau}_{n e t} d t$

Some moments of inertia from Halliday, Resnick, \& Walker, $10^{\text {th }}$ edition.

