Name \qquad
Physics 121 Quiz \＃1，September 16， 2022
Please show all work，thoughts and／or reasoning in order to receive partial credit．The quiz is worth 10 points total．

I affirm that I have carried out my academic endeavors with full academic honesty．

1．Two point－charges $q_{1}=3 n C$ and $q_{2}=$ unknown are placed along the x－axis．Point charge q_{1} is placed at a point $(x, y)=(-4,0)$ while point charge q_{2} is placed at $(x, y)=(7,0)$ ，where the distances are measured in centimeters．With the two point－charges in this configuration，the net electric field at the origin $(x, y)=(0,0)$ is known to be zero．What are the magnitude and sign of the point charge q_{2} that makes this possible？

In order for the field to vanish somewhere between the two charges，q_{2} has to be positive．

$$
\begin{aligned}
& \vec{E}_{n e t, P}=\langle 0,0,0\rangle=\vec{E}_{1 P}+\vec{E}_{2 P}=\frac{k q_{1}}{r_{1 P}^{2}}\left[\frac{\langle 0,0,0\rangle c m-\langle-4,0,0\rangle c m}{4 c m}\right]+\frac{k q_{2}}{r_{2 P}^{2}}\left[\frac{\langle 0,0,0\rangle c m-\langle 7,0,0\rangle c m}{7 c m}\right] \\
& \vec{E}_{n e t, P}=\langle 0,0,0\rangle=\frac{k q_{1}}{r_{1 P}^{2}}\langle 1,0,0\rangle+\frac{k q_{2}}{r_{2 P}^{2}}\langle-1,0,0\rangle \\
& 0=\frac{k q_{1}}{r_{1 P}^{2}}-\frac{k q_{2}}{r_{2 P}^{2}} \rightarrow q_{2}=\left(\frac{r_{2 P}}{r_{1 P}}\right)^{2} q_{1}=\left(\frac{7 c m}{4 c m}\right)^{2} \times 3 n C=9.2 n C
\end{aligned}
$$

2．Suppose that point－charge q_{2} is moved to a point $(x, y)=(2,0)$ along the x －axis，where the distances are still measured in centimeters．What，is the electric field at the origin in this case？

$$
\begin{aligned}
& \vec{E}_{n e t}=\vec{E}_{1}+\vec{E}_{2}=\frac{k q_{1}}{r_{1 P}^{2}}\left[\frac{\langle 0,0,0\rangle c m-\langle-4,0,0\rangle c m}{4 c m}\right]+\frac{k q_{2}}{r_{2 P}^{2}}\left[\frac{\langle 0,0,0\rangle c m-\langle 2,0,0\rangle c m}{2 c m}\right] \\
& \vec{E}_{n e t, P}=\frac{k q_{1}}{r_{1 P}^{2}}\langle 1,0,0\rangle+\frac{k q_{2}}{r_{2 P}^{2}}\langle-1,0,0\rangle=\left\langle\frac{k q_{1}}{r_{1 P}^{2}}-\frac{k q_{2}}{r_{2 P}^{2}}, 0,0\right\rangle \\
& \frac{k q_{1}}{r_{1 P}^{2}}-\frac{k q_{2}}{r_{2 P}^{2}}=9 \times 10^{9} \frac{N ⿰ ㇒ ⿻ 土 一^{2}}{c^{2}}\left[\frac{3 \times 10^{-9} C}{(0.04 m)^{2}}-\frac{9.2 \times 10^{-9} C}{(0.02 m)^{2}}\right]=-1.9 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{C}} \\
& \vec{E}_{n e t, P}=\langle-1,9,0,0\rangle \times 10^{5} \frac{\mathrm{~N}}{\mathrm{C}}
\end{aligned}
$$

3. A $q_{3}=-2 n C$ point-charge is placed at the origin with the point charges configured as in part 2 . What is the magnitude and direction of the electric force felt by q_{3} ?

$$
\vec{F}=q \vec{E}=-2 \times 10^{-9} C \times\langle-1,9,0,0\rangle \times 10^{5} \frac{N}{C}=\langle-3.8,0,0\rangle \times 10^{-4} N
$$

4. Suppose that you have the situation shown below. Each point-charge has the same magnitude of charge, q, and the sign of each point-charge is shown in the figure. What is the net electric force on the point charge located at the origin?

$\vec{F}_{n e t}=\vec{F}_{q, q}+\vec{F}_{-q, q}=\frac{k q^{2}}{L^{2}}\left[\frac{\langle 0,0,0\rangle-\langle L, 0,0\rangle}{L}\right]-\frac{k q^{2}}{2 L^{2}}\left[\frac{\langle 0,0,0\rangle-\langle L, L, 0\rangle}{\sqrt{2} L}\right]$
$\vec{F}_{n e t}=\frac{k q^{2}}{L^{2}}\langle-1,0,0\rangle+\frac{k q^{2}}{2 L^{2}}\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\rangle=\left\langle-0.65 \frac{k q^{2}}{L^{2}}, 0.35 \frac{k q^{2}}{L^{2}}, 0\right\rangle$
Or as a magnitude and a direction:
$F_{n e t}=\sqrt{F_{n e t, x}^{2}+F_{n e t, y}^{2}}=\sqrt{(-0.65)^{2}+(0.35)^{2}} \frac{\mathrm{kq}}{\mathrm{L}^{2}}=0.74 \frac{\mathrm{kq}}{\mathrm{L}^{2}}$
$\tan \phi=\frac{F_{n e t, y}}{F_{n e t, x}} \rightarrow \phi=\tan ^{-1}\left(\frac{F_{n e t, y}}{F_{n e t, x}}\right)=\tan ^{-1}\left(\frac{0.35 \frac{k q^{2}}{L^{2}}}{-0.65 \frac{k q^{2}}{L^{2}}}\right)=28.3^{0}$ above the negative x -axis.
