Name \qquad
Physics 121 Quiz \#1, January 8, 2016
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Suppose that you have two point charges where charge $q_{1}=1 n C$ is located at $\langle 0.5,-0.1,-0.5\rangle m$ and another charge $q_{2}=-9 n C$ is located at $\langle-0.6,-0.7,-0.2\rangle m$.

1. What is the electric force on q_{1} due to q_{2} ?

$$
\begin{aligned}
\hat{r} & =\frac{\vec{r}_{o}-\vec{r}_{s}}{\left|\vec{r}_{o}-\vec{r}_{s}\right|}=\frac{\langle 0.5,-0.1,-0.5\rangle m-\langle-0.6,-0.7,-0.2\rangle m}{\sqrt{(0.5+0.6)^{2}+(-0.1+0.7)^{2}+(-0.5+0.3)^{2}} m} \\
& =\frac{\langle 1.1,0.6,-0.3\rangle}{1.288}=\langle 0.854,0.466,-0.233\rangle \\
\vec{F}_{1,2} & =k \frac{q_{1} q_{2}}{r_{1,2}^{2}} \hat{r}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\left[\frac{1 \times 10^{-9} \mathrm{C} \times\left(-9 \times 10^{-9} \mathrm{C}\right)}{(1.28 \mathrm{~m})^{2}}\right]\langle 0.854,0.466,-0.233\rangle \\
\vec{F}_{1,2} & =\langle-4.17,-2.27,1.14\rangle \times 10^{-8} \mathrm{~N}
\end{aligned}
$$

2. What is the electric field at charge q_{1} 's location due to charge q_{2} ?

The electric field is given by:

$$
\vec{E}=\frac{\vec{F}_{1,2}}{q_{1}}=\frac{\langle-4.17,-2.27,1.14\rangle \times 10^{-8} \mathrm{~N}}{1 \times 10^{-9} \mathrm{C}}=\langle-41.7,-22.7,11.4\rangle \frac{\mathrm{N}}{\mathrm{C}}
$$

3. If the charge q_{1} were released from rest at its initial location, the direction of q_{1} 's acceleration would most likely be
a. directly toward the charge q_{2}.
b. directly away from the charge q_{2}.
c. not defined since the magnitude of q_{1} 's acceleration is zero and thus charge q_{1} would remain at rest.
d. unable to be determined since the mass of q_{1} is unknown.

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} ; \hat{r}=\frac{\vec{r}_{o}-\vec{r}_{s}}{\left|\vec{r}_{o}-\vec{r}\right|} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W=-q \Delta V_{f, i}
\end{aligned}
$$

Constants

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm}{ }^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{Nm}{ }^{2}}{\mathrm{C}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{T_{m}}{A}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{c^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

