Name $\qquad$
Physics 121 Quiz \#2, September 23, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Consider to very long plastic rods each of length $L=10 \mathrm{~m}$ placed parallel to each other a distance $a=$ 10 cm apart. The rods are oriented along the z -axis (which points into and out of the plane of the page) with the midpoint of the rods located at $z=0$. Each rod has a charge $Q_{1}=Q_{2}=3.2 \mu C$.


1. What is the electric field (magnitude and direction) at a point $P=\left\langle\frac{a}{2}, \frac{a}{2}, 0\right\rangle$ due to the rod with charge $Q_{1}$ ?

$$
\begin{gathered}
\vec{E}_{1}=\left\langle\frac{k Q_{1}}{r \sqrt{r^{2}+\left(\frac{L}{2}\right)^{2}}} \cos \theta, \frac{k Q_{1}}{r \sqrt{r^{2}+\left(\frac{L}{2}\right)^{2}}} \sin \theta, 0\right\rangle \\
r=\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}=\frac{a}{\sqrt{2}}=\frac{0.1 m}{\sqrt{2}}=0.071 m \\
\tan \theta=\frac{a / 2}{a / 2}=1 \rightarrow \theta=\tan ^{-1} 1=45^{0} \\
\vec{E}_{1}=\left\langle\frac{k Q_{1}}{r \sqrt{r^{2}+\left(\frac{L}{2}\right)^{2}}} \cos \theta, \frac{k Q_{1}}{r \sqrt{r^{2}+\left(\frac{L}{2}\right)^{2}}} \sin \theta, 0\right\rangle \\
\vec{E}_{1}=\frac{9 \times 10^{9} \frac{\mathrm{Nm}}{C^{2}} \times 3.2 \times 10^{-6} C}{0.071 m \sqrt{(0.071 m)^{2}+\left(\frac{10 m}{2}\right)^{2}}}\langle\cos 45, \sin 45,0\rangle \\
\vec{E}_{1}=\langle 5.7,5.7,0\rangle \times 10^{4} \frac{N}{C}
\end{gathered}
$$

2. What is the electric field (magnitude and direction) at a point $P=\left\langle\frac{a}{2}, \frac{a}{2}, 0\right\rangle$ due to the rod with charge $Q_{2}$ ?
$\vec{E}_{2}=\left\langle-\frac{k Q_{2}}{r \sqrt{r^{2}+\left(\frac{L}{2}\right)^{2}}} \cos \theta, \frac{k Q_{2}}{r \sqrt{r^{2}+\left(\frac{L}{2}\right)^{2}}} \sin \theta, 0\right\rangle$
$\vec{E}_{2}=\frac{9 \times 10^{9} \frac{9 \mathrm{Nm}^{2}}{\mathrm{C}^{2}} \times 3.2 \times 10^{-6} \mathrm{C}}{0.071 \mathrm{~m} \sqrt{(0.071 \mathrm{~m})^{2}+\left(\frac{10 \mathrm{~m}}{2}\right)^{2}}}\langle-\cos 45, \sin 45,0\rangle$
$\vec{E}_{2}=\langle-5.7,5.7,0\rangle \times 10^{4} \frac{N}{C}$
3. What is the net electric field at point $P=\left\langle\frac{a}{2}, \frac{a}{2}, 0\right\rangle$ from rods with charges $Q_{1}$ and $Q_{2}$ ?

$$
\vec{E}_{n e t}=\vec{E}_{1}+\vec{E}_{2}=\langle 5.7,5.7,0\rangle \times 10^{4} \frac{N}{C}+\langle-5.7,5.7,0\rangle \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}}=\langle 0,1.15,0\rangle \times 10^{5} \frac{\mathrm{~N}}{\mathrm{C}}
$$

4. Suppose that a point charge $q_{3}=-4 \mu C$ were placed at point $P=\left\langle\frac{a}{2}, \frac{a}{2}, 0\right\rangle$. What force would $q_{3}$ experience?

$$
\vec{F}_{q_{3}}=q_{3} \vec{E}_{n e t}=-4 \times 10^{-6} C \times\langle 0,1.15,0\rangle \times 10^{5} \frac{N}{C}=\langle 0,-0.456,0\rangle N
$$

