Name \qquad
Physics 121 Quiz \#2, January 15, 2016
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Suppose that a Fe^{+3} (iron +3 e ion) is located at a point P located at $\langle 0,400,0\rangle n m$ in space and that a $H F$ molecule is located at the origin with the H^{+}ion located on the negative x-axis and the F^{-}ion located on the positive x -axis. The magnitude of the dipole moment of $H F$ is $|\vec{p}|=6.36 \times 10^{-30} \mathrm{Cm}$.
a. What is the electric force on the $F e^{+3}$ due to the electric dipole $H F$ at the origin?

$$
\begin{aligned}
& \vec{E}=\left\langle\frac{k q s}{r^{3}}, 0,0\right\rangle=\left\langle\frac{k p}{r^{3}}, 0,0\right\rangle=\left\langle\frac{9 \times 10^{9} \frac{N^{2}{ }^{2}}{\mathrm{C}^{2}} \times 6.36 \times 10^{-30} \mathrm{Cm}}{\left(400 \times 10^{-9} \mathrm{~m}\right)^{3}}, 0,0\right\rangle \\
& \vec{E}=\langle 0.89,0,0\rangle \frac{N}{\mathrm{C}} \\
& \vec{F}=q \vec{E}=(3 e) \vec{E}=\left(3 \times 1.6 \times 10^{-19} \mathrm{C}\right)\langle 0.89,0,0\rangle \frac{N}{\mathrm{C}} \\
& \vec{F}=\left\langle 4.29 \times 10^{-19}, 0,0\right\rangle N
\end{aligned}
$$

b. What is the polarizability of $H F$?

$$
p=q s=\alpha E \rightarrow \alpha=\frac{p}{E}=\frac{6.36 \times 10^{-30} \mathrm{Cm}}{0.89 \frac{N}{C}}=7.15 \times 10^{-30} \frac{\mathrm{Cm}}{\mathrm{~V} / \mathrm{C}}
$$

From the literature: https://www.princeton.edu/~fhs/paper97/paper97.pdf, the polarizability of $H F$ is $\alpha=8.20 \times 10^{-31} \frac{\mathrm{~cm}}{\mathrm{~N} / \mathrm{c}}$.
c. Suppose that the Fe^{+3} were replaced by a Cu^{+2} ion located the same point P in space. The net force on the Cu^{+2} ion due to the $H F$ molecule located at the origin would be

1. the same magnitude as the force on the $F e^{+3}$ ion but in the opposite direction.
2. the same force as on the Fe^{+3}.
3. greater for the Cu^{+2} ion than for the Fe^{+3} ion.
4. lower for the Cu^{+2} ion than for the Fe^{+3} ion.

Physics 121 Equation Sheet

Electric Forces, Fields and Potentials
$\vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} ; \quad \hat{r}=\frac{\vec{r}_{o}-\vec{r}_{s}}{\left|\vec{r}_{o}-\vec{r}_{s}\right|}$
$\vec{E}=\frac{\vec{F}}{q}$
$\vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r}$
$\vec{p}=q \vec{s}=\alpha \vec{E}$
$\left|\vec{E}_{\|}\right|=\frac{2 k q s}{r^{3}} ;$ dipole $r \gg s$
$\left|\vec{E}_{\perp}\right|=\frac{k q s}{r^{3}} ;$ dipole $r \gg s$
Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{Nm}{ }^{2}}{\mathrm{C}^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{C^{2}}{N m^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{A}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{~J} s$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

