Name \qquad
Physics 121 Quiz \#3, January 22, 2016
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Consider a semi-circular arc of radius $R=10 \mathrm{~cm}$ with its center at the origin as shown below. The rod carries a uniformly distributed charge $Q=-0.3 n C$.
a. What is the expression for the vector electric field at the origin? Hints: 1. Measure angles in radians with respect to the positive x-axis. That is, $+x \rightarrow \theta=0 ;+y \rightarrow \theta=\frac{\pi}{2}$, etc. 2. You may need

$$
\begin{aligned}
& \int \cos \theta d \theta=\sin \theta \text { and } \int \sin \theta d \theta=-\cos \theta . \\
& \vec{E}_{0}=\int d E=\int \frac{d q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \\
& d q=-\left(\frac{d \theta}{\pi}\right) Q ; \quad \hat{r}=\frac{\vec{r}_{o}-\vec{r}_{s}}{\left|\vec{r}_{o}-\vec{r}_{s}\right|}=\frac{\langle 0,0,0\rangle-\langle R \cos \theta, R \sin \theta, 0\rangle}{R}=\langle-\cos \theta,-\sin \theta, 0\rangle \\
& \vec{E}_{0}=\int d E=-\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \frac{1}{4 \pi \varepsilon_{0} R^{2}}\left(\frac{d \theta}{\pi}\right) Q\langle-\cos \theta,-\sin \theta, 0\rangle=\frac{Q}{4 \pi^{2} \varepsilon_{0} R^{2}}\left\langle\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \cos \theta d \theta, \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \sin \theta d \theta, 0\right\rangle \\
& \left.\vec{E}_{0}=\frac{Q}{4 \pi^{2} \varepsilon_{0} R^{2}}\langle\sin \theta| \frac{\pi}{\frac{3 \pi}{2}},-\left.\cos \theta\right|_{\frac{\pi}{2}} ^{\frac{3 \pi}{2}}, 0\right\rangle \\
& \vec{E}_{0}=\left\langle\frac{-2 Q}{4 \pi^{2} \varepsilon_{0} R^{2}}, 0,0\right\rangle
\end{aligned}
$$

b. Suppose that a $\mathrm{Cu} u^{+2}$ ion with mass $m_{\mathrm{Cu}^{+2}}=1.055 \times 10^{-25} \mathrm{~kg}$ and charge $q_{\mathrm{Cu}^{+2}}=2 e$ were placed at the origin. If the Cu^{+2} ion were released from rest, what initial acceleration would the Cu^{+2} experience? The force is given by Newton's second law.

$$
\begin{aligned}
& \vec{F}_{C u^{+2}}=m_{C u^{+2}} \vec{a}_{C u^{+2}} \rightarrow \vec{a}_{C u^{+2}}=\frac{\vec{F}_{C u^{+2}}}{m_{C u^{+2}}}=\left(\frac{2 e}{m_{C u^{+2}}}\right) \vec{E}_{0}=\left\langle\frac{-2 e 2 Q}{m 4 \pi^{2} \varepsilon_{0} R^{2}}, 0,0\right\rangle \\
& \vec{a}_{C u^{+2}}=\left\langle\frac{-e Q}{m \pi^{2} \varepsilon_{0} R^{2}}, 0,0\right\rangle=\left\langle\frac{1.6 \times 10^{-19} \mathrm{C} \times\left(-0.3 \times 10^{-9} \mathrm{C}\right)}{\pi^{2} \times 1.055 \times 10^{-25} \mathrm{~kg} \times 8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \times(0.1 \mathrm{~m})^{2}}, 0,0\right\rangle \\
& \vec{a}_{C u^{+2}}=\langle-5.21,0,0\rangle \times 10^{8} \frac{m}{s^{2}}
\end{aligned}
$$

Physics 121 Equation Sheet

Electric Forces, Fields and Potentials
$\vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} ; \quad \hat{r}=\frac{\vec{r}_{o}-\vec{r}_{s}}{\left|\vec{r}_{o}-\vec{r}_{s}\right|}$
$\vec{E}=\frac{\vec{F}}{q}$
$\vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r}$
$\vec{p}=q \vec{s}=\alpha \vec{E}$
$\left|\vec{E}_{\|}\right|=\frac{2 k q s}{r^{3}} ;$ dipole $r \gg s$
$\left|\vec{E}_{\perp}\right|=\frac{k q s}{r^{3}} ;$ dipole $r \gg s$
$\left|\vec{E}_{r o d}\right|=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q}{r \sqrt{r^{2}+(L / 2)^{2}}}\right] ; \quad\left|\vec{E}_{r o d}\right| \sim \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{2 Q}{r L}\right) \quad L \gg r$
$\left|\vec{E}_{\text {ring }}\right|=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q z}{\left(R^{2}+z^{2}\right)^{\frac{3}{2}}}\right]$
$\left|\vec{E}_{d i s k}\right|=\frac{Q}{2 \pi \varepsilon_{0} R^{2}}\left[1-\frac{z}{\sqrt{R^{2}+z^{2}}}\right] ; \quad\left|\vec{E}_{d i s k}\right| \sim \frac{Q}{2 \varepsilon_{0} A}\left[1-\frac{z}{R}\right] \quad z \ll R ; \quad\left|\vec{E}_{d i s k}\right| \sim \frac{Q}{2 \varepsilon_{0} A} \quad z \ll R$
$\left|\vec{E}_{\text {capacitor }}\right| \sim \frac{Q}{\varepsilon_{0} A} ; \quad\left|\vec{E}_{\text {fringe }}\right| \sim \frac{Q}{2 \varepsilon_{0} A}\left(\frac{s}{R}\right)$

Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

$1 e=1.6 \times 10^{-19} \mathrm{C}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{T m}{A}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{Nm}}{\mathrm{C}^{2}}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{C^{2}}{N m^{2}}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

