Name \qquad
Physics 121 Quiz \#4, October 14, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A spherical capacitor is made of two concentric metal spherical plates of inner radius $r_{\text {inner }}=10 \mathrm{~cm}$ while the outer plate has a radius of $r_{\text {outer }}=80 \mathrm{~cm}$. The space between the spheres is filled with Teflon of dielectric constant $\kappa=2.1$. The capacitor is connected to a 100 V battery and charges instantaneously.

1. What is the capacitance of this spherical capacitor?

$$
C=\frac{4 \pi \kappa \varepsilon_{0} R_{\text {outer }} R_{\text {inner }}}{R_{\text {outer }}-R_{\text {inner }}}=\frac{4 \pi \times 2.1 \times 8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{N m^{2}} \times 0.8 \mathrm{~m} \times 0.1 \mathrm{~m}}{0.8 \mathrm{~m}-0.1 \mathrm{~m}}=2.7 \times 10^{-11} \mathrm{~F}
$$

2. Suppose that the fully charged spherical capacitor is connected to a $R=10 \mathrm{k} \Omega=10000 \Omega$ resistor and allowed to discharge. After three time-constants (3τ), what percent of the initial stored charge has been lost from the plates of this capacitor?

$$
Q(t)=Q_{\max } e^{-\frac{t}{R C}} \rightarrow Q(t=3 R C)=Q_{\max } e^{-\frac{3 R C}{R C}}=Q_{\max } e^{-3}=0.05 Q_{\max }
$$

Thus 5% of the maximum charge, $Q_{\max }$, remains on the capacitor, so 95% of $Q_{\max }$ must have been lost.
3. What is the magnitude of the current at a time $t=3 \tau$, where τ is the time constant of the circuit?

$$
\begin{aligned}
& I=\frac{d Q}{d t}=\frac{d}{d t}\left(Q_{\max } e^{-\frac{t}{R C}}\right)=\frac{Q_{\max }}{R C} e^{-\frac{t}{R C}}=\frac{C V_{\max }}{R C} e^{-\frac{t}{R C}}=\frac{V_{\max }}{R} e^{-\frac{t}{R C}} \\
& I=\frac{100 V}{10000 \Omega} e^{-\frac{3 R C}{R C}}=0.01 A \times e^{-3}=5 \times 10^{-4} \mathrm{~A}
\end{aligned}
$$

4. Suppose that the wires connecting the resistor to the capacitor were made of gold, with a diameter of 1 mm . How many charge carriers are there per unit volume are there if gold donates one free charge carrier per atom? Gold is known to have Gold is known to have a density of $19300 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and a molecular mass $197 \frac{\mathrm{~g}}{\text { mol }}$.

$$
n=\frac{\rho_{A u}}{m_{A u}} \times N_{A}=\frac{19300 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{0.197 \frac{\mathrm{~kg}}{\mathrm{~mol}_{\mathrm{ol}}}} \times 6.02 \times 10^{23}=5.9 \times 10^{28} \mathrm{~m}^{-3}
$$

5. What is the drift velocity of the charge carriers at a time $t=3 \tau$, where τ is the time constant of the circuit?

$$
\begin{aligned}
& I=n e A v_{d} \rightarrow v_{d}=\frac{I}{n e A}=\frac{5 \times 10^{-4} \mathrm{~A}}{5.9 \times 10^{28} \mathrm{~m}^{-3} \times 1.6 \times 10^{-19} \mathrm{C} \times \pi\left(0.5 \times 10^{-3} \mathrm{~m}\right)^{2}} \\
& v_{d}=6.7 \times 10^{-8} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

