Name \qquad
Physics 121 Quiz \#6 November 4, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Consider the long straight wire shown below in which a $30 A$ current is flowing from west to east.

South

1. At a point 0.5 m to the south of this wire, what is the magnitude and direction of the magnetic field produced by the current flowing?
$B=|\vec{B}|=\frac{\mu_{0} I}{2 \pi r}=\frac{4 \pi \times 10^{-7 \frac{T m}{A} \times 30 \mathrm{~A}}}{2 \pi \times 0.5 \mathrm{~m}}=1.2 \times 10^{-5} \mathrm{~T}$ directed into the plane of the paper by the righthand rule.
2. Suppose that at a distance of 0.5 m south of the wire, another wire was placed. This second wire is parallel to the first wire and has a 20 A current flowing east to west. What is the magnitude and direction of the force on a 1 m length of this second wire?

West $\xrightarrow{\text { North }}$| South |
| :--- |
| East |

$F_{B}=\left|\vec{F}_{B}\right|=I L B \sin \theta=20 A \times 1 \mathrm{~m} \times 1.2 \times 10^{-5} \mathrm{~T} \times \sin 90=2.4 \times 10^{-4} \mathrm{~N}$ down the page to the south by the right-had rule.

Or we can evaluate the vector cross product:

$$
\vec{F}_{B}=\overrightarrow{I L} \times \vec{B}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
-I L & 0 & 0 \\
0 & 0 & -B
\end{array}\right|=(0) \hat{x}-(I L B) \hat{y}+(0) \hat{k}=\langle 0,-2.4,0\rangle \times 10^{-4} N
$$

3. Suppose that this lower wire is part of a larger circuit shown below. Over a 1 mm segment of wire located at the midpoint of the left-hand side of the rectangular wire loop, what is the magnitude and direction of the force at this point? Additionally, over a 1 mm segment of wire located at the midpoint of the right-hand side of the rectangular wire loop, what is the magnitude and direction of the force at this point?

$F_{B}=\left|\vec{F}_{B}\right|=I L B \sin \theta=I L\left(\frac{\mu_{0} I}{2 \pi r}\right)=$
$20 A \times 1 \times 10^{-3} \mathrm{~m} \times\left(\frac{4 \pi \times 10^{-7 \frac{7 m}{A} \times 30 A}}{2 \pi \times 0.25 m}\right)=1.6 \times 10^{-7} N$ to the east by the right-had rule.
On the right-hand side:
$F_{B}=\left|\vec{F}_{B}\right|=I L\left(\frac{\mu_{0} I}{2 \pi r}\right)=20 A \times 1 \times 10^{-3} \mathrm{~m} \times\left(\frac{4 \pi \times 10^{-7 \frac{7 m}{A} \times 30 A}}{2 \pi \times 0.25 m}\right)=1.6 \times 10^{-7} N$ to the west by the right-had rule.
4. What is the net force on the bottom segment of the rectangular wire loop if the bottom part has a length of $1 m$?
$F_{B, 1}=\left|\vec{F}_{B}\right|=I L B \sin \theta=I L\left(\frac{\mu_{0} I}{2 \pi r}\right)=20 A \times 1 \mathrm{~m} \times\left(\frac{4 \pi \times 10^{-7 \frac{T m}{A} \times 30 A}}{2 \pi \times 1 \mathrm{~m}}\right) \times \sin 90=1.2 \times 10^{-4} \mathrm{~N}$ up the page to the north by the right-had rule.
$F_{B, 2}=\left|\vec{F}_{B}\right|=I L B \sin \theta=I L\left(\frac{\mu_{0} I}{2 \pi r}\right)=20 A \times 1 m \times\left(\frac{4 \pi \times 10^{-7 \frac{T m}{A} \times 20 A}}{2 \pi \times 0.5 m}\right) \times \sin 90=1.6 \times 10^{-4} N$ down the page to the south by the right-had rule.
$F_{B}=F_{B, 1}-F_{B, 2}=1.2 \times 10^{-4} N-1.6 \times 10^{-4} N=-4 \times 10^{-5} N$ or $4 \times 10^{-5} N$ down the page.
5. What is the net force on the wire loop in magnitude and direction?

$$
\begin{aligned}
& \vec{F}_{\text {net }}=\vec{F}_{\text {top }}+\vec{F}_{\text {bottom }}+\vec{F}_{\text {left }}+\vec{F}_{\text {right }} \\
& \vec{F}_{n e t}=\langle 0,-2.4,0\rangle \times 10^{-4} N+\langle 0,-4,0\rangle \times 10^{-5} T+\langle 1.6,0,0\rangle \times 10^{-7} N+\langle-1.6,0,0\rangle \times 10^{-7} N \\
& \vec{F}_{\text {net }}=\langle 0,-1.20,0\rangle \times 10^{-4} N
\end{aligned}
$$

or $F_{\text {net }, y}=F_{\text {top }}-F_{\text {bottom }}=-2.4 \times 10^{-4} \mathrm{~N}-4 \times 10^{-5} \mathrm{~N}=-2 \times 10^{-4} \mathrm{~N}$ or $2 \times 10^{-4} \mathrm{~N}$ to the south by the right-hand rule, where the left and right forces sum to zero.

