Name \qquad
Physics 121 Quiz \#7 November 11, 2022
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Consider the situation below in which two straight conducting rails form a right angle. A conducting bar is in contact with the rails and starts at the vertex (intersection of the two rails) at time $t=0$. The bar moves at constant velocity $v=5.2 \frac{\mathrm{~m}}{\mathrm{~s}}$ through a magnetic field $B=0.35 \mathrm{~T}$ directed out of the page.

1. What is the expression for the magnetic flux ϕ_{B}, as a function of time, through the triangular loop?

Hint the area of a triangle is given by $A=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& \phi_{B}=B A \cos \theta=B A=2 B\left(\frac{1}{2} b h\right)=2 B\left(\frac{1}{2}(v t \tan 45)(v t)\right) \\
& \phi_{b}=B v^{2} t^{2}
\end{aligned}
$$

2. What is the potential difference induced across the triangular loop at a time $t=3 s$?

$$
\varepsilon=\left|-N \frac{d \phi_{B}}{d t}\right|=\frac{d \phi_{B}}{d t}=\frac{d}{d t}\left(B v^{2} t^{2}\right)=2 B v^{2} t=2 \times 0.35 T \times\left(5.2 \frac{m}{s}\right)^{2} \times 3 s=56.8 V
$$

3. If the bar has a resistance of $R=5 \Omega$, what is the magnitude and direction of the current induced in the bar?
$I=\frac{\varepsilon}{R}=\frac{56.8 \mathrm{~V}}{5 \Omega}=11.3 \mathrm{~A}$
The direction of the current flow would be clockwise to undo the change in magnetic flux, which is increasing out of the page.
4. At a time $t=3 s$, what is the magnitude and direction of the magnetic force on the bar?
$F_{B}=I L B=I(2 v t \tan 45) B=11.3 A \times\left(2 \times 5.2 \frac{m}{s} \times 3 s\right) \times 0.35 T=123.4 \mathrm{~N}$ and by the right-hand rule, the force is directed opposite to the velocity, or down the page.
5. What is energy dissipated as heat across the bar at a time $t=3 s$?

$$
P=\frac{\Delta E}{\Delta t} \rightarrow \Delta E=P \Delta t=I^{2} R \Delta t=(11.3 A)^{2} \times 5 \Omega \times 3 s=1915.4 J
$$

