Name \qquad
Physics 121 Quiz \#7, March 4, 2016
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. Suppose that you have the blue box shown below in which there is some electric charge inside. The electric field vectors are shown and $\left|\vec{E}_{l e f t}\right|=3 \times 10^{4} \frac{N}{C},\left|\vec{E}_{\text {right }}\right|=1 \times 10^{4} \frac{N}{C}$,
$\left|\vec{E}_{\text {front }}\right|=\left|\vec{E}_{\text {back }}\right|=2 \times 10^{4} \frac{N}{C}$, and $\left|\vec{E}_{\text {too }}\right|=\left|\vec{E}_{\text {botoom }}\right|=2 \times 10^{4} \frac{N}{C}$. What is the net electric flux through the surface of the box?

$\phi_{E}=\vec{E} \cdot \hat{n} d A=|\vec{E}||d A| \cos \theta$
$\phi_{\text {left }}=E_{\text {left }} A \cos (180)=-E_{\text {left }} A=-3 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \times(0.01 \mathrm{~m})^{2}=-3 \mathrm{Vm}$
$\phi_{\text {right }}=E_{\text {right }} A \cos (180)=-E_{\text {right }} A=-1 \times 10^{4} \frac{N}{C} \times(0.01 \mathrm{~m})^{2}=-1 \mathrm{Vm}$
$\phi_{\text {left }}=E_{\text {front }} A \cos (90)=0 \mathrm{Vm}$
$\phi_{\text {back }}=E_{\text {back }} A \cos (90)=0 \mathrm{Vm}$
$\phi_{\text {top }}=E_{\text {top }} A \cos (180)=-E_{\text {top }} A=-2 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \times(0.01 \mathrm{~m} \times 0.5 \mathrm{~m})=-100 \mathrm{Vm}$
$\phi_{\text {bottom }}=E_{\text {bottom }} A \cos (180)=-E_{\text {bottom }} A=-2 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{C}} \times(0.01 \mathrm{~m} \times 0.5 \mathrm{~m})=-100 \mathrm{Vm}$
$\phi_{\text {total }}=\oint \vec{E} \cdot \hat{n} d A=(-3 \mathrm{Vm})+(-1 \mathrm{Vm})+(0 \mathrm{Vm})+(0 \mathrm{Vm})+(-100 \mathrm{Vm})+(-100 \mathrm{Vm})=-204 \mathrm{Vm}$
2. What is the magnitude and sign of the net charge enclosed?

$$
\oint \vec{E} \cdot \hat{n} d A=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \rightarrow Q_{\text {enclosed }}=\varepsilon_{0} \phi_{\text {total }}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} m^{2}} \times(-204 \mathrm{Vm})=-1.81 \times 10^{-9} \mathrm{C} .
$$

3. What is the magnitude and direction of the net current enclosed by the grey box? Assume that $\left|\vec{B}_{\text {left }}\right|=\left|\vec{B}_{\text {right }}\right|=2 \times 10^{-5} \mathrm{~T},\left|\vec{B}_{\text {top }}\right|=1.5 \times 10^{-5} \mathrm{~T}$, and $\left|\vec{B}_{\text {botom }}\right|=0.8 \times 10^{-5} \mathrm{~T}$. (Hint: Start at the corner marked with the star * and go clockwise around the loop and note the box is not drawn to scale.)

$$
\oint \vec{B} \cdot d \vec{l}=\mu_{o} I_{\text {enclosed }}
$$

$$
(\oint \vec{B} \cdot d \vec{l})_{\text {top }}=B_{\text {top }} x \cos (0)=B_{\text {top }} x=1.5 \times 10^{-5} T \times(0.04 \mathrm{~m})=6 \times 10^{-7} \mathrm{Vs}
$$

$$
(\oint \vec{B} \cdot d \vec{l})_{\text {right }}=B_{r i g h t} y \cos (90)=0 V s
$$

$$
(\oint \vec{B} \cdot d \vec{l})_{\text {bottom }}=B_{\text {bottom }} x \cos (180)=-B_{\text {bottom }} x=-0.8 \times 10^{-5} T \times(0.04 \mathrm{~m})=-3.2 \times 10^{-7} \mathrm{Vs}
$$

$$
(\oint \vec{B} \cdot d \vec{l})_{l e f t}=B_{l e f t} y \cos (90)=0 \mathrm{Vs}
$$

$$
\oint \vec{B} \cdot d \vec{l}=(\oint \vec{B} \cdot d \vec{l})_{\text {top }}+(\oint \vec{B} \cdot d \vec{l})_{\text {right }}+(\oint \vec{B} \cdot d \vec{l})_{\text {bottom }}+(\oint \vec{B} \cdot d \vec{l})_{\text {left }}=2.8 \times 10^{-7} V s=\mu_{o} I_{\text {enclosed }}
$$

$$
\therefore I_{\text {enclosed }}=\frac{1}{\mu_{o}} \oint \vec{B} \cdot d \vec{l}=\frac{2.8 \times 10^{-7} V s}{4 \pi \times 10^{-7} \frac{T m}{A}}=0.22 \mathrm{~A}
$$

4. A square loop of wire lies in the plane of the page with its normal perpendicular to the page and pointing out at your face. A uniform magnetic field points out of the page towards your face through the loop of wire at an angle θ measured with respect to the normal to the loop of wire. The magnetic flux through the square loop of wire is
a. zero.
b. $\vec{B} \cdot \vec{A}_{\text {loop }}$.
c. $\left|\vec{B} \| \vec{A}_{\text {loop }}\right| \cos \theta$.
d. $\left|\vec{B} \| \vec{A}_{\text {loop }}\right| \sin \theta$.
e. $\left|\vec{B} \| \vec{A}_{\text {loop }}\right|$.

$$
\phi_{B}=\vec{B} \cdot \hat{n} d A=|\vec{B}|\left|A_{\text {loop }}\right| \cos \theta
$$

Physics 121 Equation Sheet

Electricity \& Magnetism
$\vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} ; \quad \hat{r}=\frac{\vec{r}_{o}-\vec{r}_{s}}{\left|\vec{r}_{o}-\vec{r}_{s}\right|}$
$\vec{E}=\frac{\vec{F}}{q}$
$\vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r}$
$\vec{p}=q \vec{s}=\alpha \vec{E}$
$\left|\vec{E}_{\| \mid}\right|=\frac{2 k q s}{r^{3}} ;$ dipole $r \gg s$
$\left|\vec{E}_{\perp}\right|=\frac{k q s}{r^{3}} ;$ dipole $r \gg s$
$\left|\vec{E}_{r o d}\right|=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q}{r \sqrt{r^{2}+(L / 2)^{2}}}\right] ; \quad\left|\vec{E}_{r o d}\right| \sim \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{2 Q}{r L}\right) L \gg r$
$\left|\vec{E}_{\text {ring }}\right|=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q z}{\left(R^{2}+z^{2}\right)^{\frac{3}{2}}}\right]$
$\left|\vec{E}_{\text {disk }}\right|=\frac{Q}{2 \pi \varepsilon_{0} R^{2}}\left[1-\frac{z}{\sqrt{R^{2}+z^{2}}}\right] ; \quad\left|\vec{E}_{\text {disk }}\right| \sim \frac{Q}{2 \varepsilon_{0} A}\left[1-\frac{z}{R}\right] \quad z \ll R ; \quad\left|\vec{E}_{\text {disk }}\right| \sim \frac{Q}{2 \varepsilon_{0} A} \quad z \ll R$
$\left|\vec{E}_{\text {capacitor }}\right| \sim \frac{Q}{\varepsilon_{0} A} ; \quad\left|\vec{E}_{\text {fringe }}\right| \sim \frac{Q}{2 \varepsilon_{0} A}\left(\frac{s}{R}\right)$
$W=-q \Delta V=-\Delta U=\Delta K ; \quad U=\sum_{i \neq j} \frac{k Q_{i} Q_{j}}{r_{i j}} ;$
$V_{Q}=\frac{k Q}{r} ; \quad V_{Q^{\prime} s}=\sum_{i} \frac{k Q_{i}}{r_{i}}$
$\Delta V=-\int \vec{E} \cdot d \vec{r}$
$E_{x}=-\frac{\Delta V}{\Delta x} ; \quad E_{y}=-\frac{\Delta V}{\Delta y} ; \quad E_{z}=-\frac{\Delta V}{\Delta z} ; \quad \vec{E}=-\left\langle\frac{d V}{d x}, \frac{d V}{d y}, \frac{d V}{d z}\right\rangle$
$Q=\left(\frac{\varepsilon_{0} A}{s}\right) \Delta V$
$I=\frac{\Delta Q}{\Delta t}=i|e|=n|e| A v_{d} ; \quad \vec{v}_{d}=\mu \vec{E}$
$\vec{B}=\frac{\mu_{o}}{4 \pi}\left(\frac{q \vec{v} \times \hat{r}}{r^{2}}\right)$
$d \vec{B}=\frac{\mu_{o} I}{4 \pi}\left(\frac{d \vec{l} \times \hat{r}}{r^{2}}\right)$
$\left|\vec{B}_{\ldots, \ldots m}\right|=\frac{\mu_{0} L I}{r} ;\left|\vec{B}_{\ldots, \ldots m}\right| \approx \frac{\mu_{0} I}{L} L \gg r$
$V=I R ; \quad R=\frac{\rho L}{A}=\frac{L}{\sigma A}$
$|\vec{J}|=\frac{I}{A}=\sigma|\vec{E}|$
$\mathrm{R}_{\text {eq,series }}=\sum_{i=1}^{N} R_{i}$
$\frac{1}{\mathrm{R}_{\text {eq,parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}}$
$P=I V=I^{2} R=\frac{V^{2}}{R}$
$E=\frac{1}{2} q V=\frac{1}{2} C V^{2}=\frac{q^{2}}{2 C}$
$Q(t)=Q_{\max }\left(1-e^{\frac{-t}{R C}}\right) ;$ charge
$Q(t)=Q_{\max } e^{\frac{-t}{R C}} ;$ discharge
$I(t)=I_{\max } e^{\frac{-t}{R C}}$
$C_{e q, \text { parallel }}=\sum_{i=1}^{N} C_{i}$

Constants

$$
\begin{array}{ll}
g=9.8 \frac{\mathrm{~m}}{s^{2}} & 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\
1 e=1.6 \times 10^{-19} \mathrm{C} & \mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{~A}} \\
k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{c}^{2}} & c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \\
\varepsilon_{o}=8.85 \times 10^{-12} \frac{c^{2}}{\mathrm{Nm} m^{2}} & h=6.63 \times 10^{-34} \mathrm{Js} \\
m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}} & \\
m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}} & \\
m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}} \\
1 a \mathrm{mu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}} \\
N_{A}=6.02 \times 10^{23} & \\
A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 \mathrm{~A}} \\
B_{\text {Earth.H }}=2 \times 10^{-5} \mathrm{~T} &
\end{array}
$$

Loop Rule: $\sum_{i} \Delta V_{i}=\sum_{i} E_{i} \Delta l_{i}=0$
Node Rule: $\sum I_{i n}=\sum I_{\text {out }}$
$\vec{F}=q \vec{v} \times \vec{B}$
$d \vec{F}=I d \vec{l} \times \vec{B}$
$\vec{F}_{n e t}=\vec{F}_{\perp}+\vec{F}_{\|}=p \frac{d \hat{p}}{d t}+\hat{p} \frac{d p}{d t} ;\left|\vec{F}_{\perp}\right|=\frac{p v}{r}$
$\vec{F}_{\text {Lorentz }}=q \vec{E}+q \vec{v} \times \vec{B}$
$\omega=\frac{v}{r}=\frac{d \theta}{d t} ; \omega=\frac{q B}{\gamma m}$
$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$K=(\gamma-1) m c^{2}$
$\vec{p}=\gamma m \vec{v}$
$\oint \vec{E} \cdot \hat{n} d A=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}$
$\oint \vec{B} \cdot \hat{n} d A=0$
$\oint \vec{B} \cdot d \vec{l}=\mu_{0} I_{\text {enclosed }}$

