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Name___________________________________ 
 

 
Please read and follow these instructions carefully: 
 

• Read all problems carefully before attempting to solve them. 
• Your work must be legible, and the organization clear. 
• You must show all work, including correct vector notation. 
• You will not receive full credit for correct answers without adequate explanations. 
• You will not receive full credit if incorrect work or explanations are mixed in with 

correct work.  So erase or cross out anything you don’t want graded. 
• Make explanations complete but brief.  Do not write a lot of prose. 
• Include diagrams. 
• Show what goes into a calculation, not just the final number.  For example

  

� 

! p ≈ m " v = 5kg( ) × 2 m
s( ) =10 kg⋅m

s  
• Give standard SI units with your results unless specifically asked for a certain 

unit. 
• Unless specifically asked to derive a result, you may start with the formulas given 

on the formula sheet including equations corresponding to the fundamental 
concepts. 

• Go for partial credit.  If you cannot do some portion of a problem, invent a 
symbol and/or value for the quantity you can’t calculate (explain that you are 
doing this), and use it to do the rest of the problem. 

• Each free-response part is worth 10 points 
 
 
 
 
 
 
 

 
I affirm that I have carried out my academic endeavors with full academic honesty. 

 
______________________________ 

 

Problem #1 /40 
Problem #2 /40 

Total /80 



1. Consider the system show below that is described by the potential fucntion 

V x( ) =
∞ x < 0
0 0≤ x ≤ a
V0 x > a

⎧

⎨
⎪

⎩
⎪

	

   
a. What are the allowed solutions to the time independent Schrödinger wave 

equation inside the well and inside of the barrier? Express your answers to the 
different regions in terms of the overall constant from the solutions inside of the 
well.  

 
In the region x < 0 , there is no wave function. 
In the region 0 ≤ x ≤ a , we have  

 
− !

2

2m
d 2ψ
dx2

= Eψ → d 2ψ
dx2

= − 2mE
!2

ψ = −k2ψ with solutions 

ψ 1 = Asin kx + Bcoskx . 
In the region x > a  , we have 

 
− !

2

2m
d 2ψ
dx2

+V0ψ = Eψ → d 2ψ
dx2

= −
2m E −V0( )
!2

ψ =
2m V0 − E( )
!2

ψ = k '( )2ψ with 

solutions ψ 2 = Ce
k 'x + De−k 'x . 

 
To keep finite ψ 2 , we require that as x→∞ , ψ 2 → 0 , so C = 0 .  Therefore 
ψ 2 = De

−k 'x . 
 
Thus the wave functions are: 

ψ x( ) =
Asin kx + Bcoskx 0 ≤ x ≤ a

De−k 'x x > a

⎧
⎨
⎪

⎩⎪
 

 
Applying the boundary conditions that the wave function and its first derivative 
are continuous at x = a  and the wave function vanishes at x = 0  we have: 
ψ x=0 : Asin0 + Bcos0 = 0→ B = 0

ψ x=a : Asin ka = De
−k 'a → D = Aek 'a sin ka

dψ
dx x=a

: Ak coska = −k 'De−k 'a

 

 
Thus the wave functions are: 

ψ x( ) =
Asin kx 0 ≤ x ≤ a

Aek 'a sin ka( )e−k 'x x > a

⎧
⎨
⎪

⎩⎪
 

 
 



b. What is the normalization constant in terms of α and β , where we defineα = ka
and β = k 'a . 
 
To normalize we apply the normalization condition: 
 

 

P = ψ *ψ dx∫ = A2 sin2 α x
a

⎛
⎝⎜

⎞
⎠⎟ dx

0

a

∫ + A2 sin2 α( )e2βe−2β
x
a dx

a

∞

∫ = 1

1= A2 x
2
−
asin 2α x

a
⎛
⎝⎜

⎞
⎠⎟

4α

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
0

a

+ A2 sin2 α( )e2β a
2β

e
−2β x

a

a

∞

1= A2 a
2
− a
4α
sin2α + a

2β
sin2α⎛

⎝⎜
⎞
⎠⎟

A = 2
a
1− sin2α

2α
+ sin

2α
β

⎛
⎝⎜

⎞
⎠⎟

− 12

 

 
This could also have been done on Mathematica.  The code is below and if you 
use the definitions of α and β provided the result is identical to A above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



c. In terms of V0 , what is the energy of the single bound state for r = 2 ?  Hint define 
α = ka and β = k 'a .  If you cannot determine a value for alpha, use α = 1 . 

 
From the boundary conditions at x = awe get: 
ψ x=a : Asin ka = De

−k 'a

dψ
dx x=a

: Ak coska = −k 'De−k 'a
 

 
Dividing these two expressions produces the equation for determining the bound 
state energies. 
 
Asin ka
Ak coska

= De−k 'a

−k 'De−k 'a
→−k ' = k cot ka→−k 'a = kacot ka⇒−β =α cotα .  

Following the procedure from class, we define α 2 + β 2 = r2 , so that 

 

2mEa
!

⎛
⎝⎜

⎞
⎠⎟

2

+
2m V0 − E( )a
!

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

= 2mV0a
2

!2
= r2 , and thus β = r2 −α 2 .  To 

solve this transcendental equation for alpha we plot the two functions and look for 
intersections.  From the graph below (generated on Mathematica) and the 
FindRoot command, α = 1.8955 .  
 
From alpha we can determine the energy of the single odd bound state.   

 

 

α 2 = 2mEa
!

⎛
⎝⎜

⎞
⎠⎟

2

= r2

V0

⎛
⎝⎜

⎞
⎠⎟
E

→ E = α
r

⎛
⎝⎜

⎞
⎠⎟
2

V0 =
1.8955
2

⎛
⎝⎜

⎞
⎠⎟
2

V0 = 0.898V0

 

  
 
 
 



d. What is the expectation value of the position?  What does the result tell you? 
 

x = ψ *xψ dx∫ = A2xsin2 α x
a

⎛
⎝⎜

⎞
⎠⎟ dx

0

a

∫ + A2 sin2 α( )e2βxe−2β
x
a dx

a

∞

∫
 

 
Evaluating the normalization coefficient: 

A = 2
a
1− sin 2 ×1.8955( )

2 ×1.8955( ) +
sin2 1.8955( )
4 − 1.8955( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− 12

= 0.624 2
a  

And, 

x = ψ *xψ dx∫ = A2xsin2 α x
a

⎛
⎝⎜

⎞
⎠⎟ dx

0

a

∫ + A2 sin2 α( )e2βxe−2β
x
a dx

a

∞

∫ = 1.28a
 

I chose to use Mathematica to evaluate the numbers in the problem and the 
integrals.  The code and solution are below. What this result implies is that if you 
made a huge ensemble of identical particles and measured their positions you’d 
find on average that the particle is most likely to be found outside of the well 
rather than inside, even though its energy is less than the barrier height. 

 
 
 

 
 
 
 
 
 
 
 
 
 In case you’re interested, the graph of the wave function is below. 
 
 
 
 
 
 
 
 
 
 
 



2.   Suppose that the state of a particle of mass m is given by the normalized wave 

function 
 
Ψ x,t( ) = mω

π!
⎛
⎝⎜

⎞
⎠⎟

1
4 2mω
!

xe
−mω
2!

x2

e
− i E
h
t
.   

a. Determine the expression for the expectation value of the kinetic energy, T .   

Hint:  To make your calculations easier in parts a, b and c, define 
 
α = mω

!
. 

 

Ψ x,t( ) = mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
4 2mω
!

xe
−mω
2!

x2

e
− i E
!
t
= α

π
⎛
⎝⎜

⎞
⎠⎟

1
4

2α xe
−α
2
x2

e
− i E
!
t

T =
p2

2m
= − !

2

2m
Ψ* x,t( )

−∞

∞

∫
d 2Ψ x,t( )
dx2

⎡

⎣
⎢

⎤

⎦
⎥dx =

3α!2

4m
= 3!

2

4m
mω
!

⎛
⎝⎜

⎞
⎠⎟ =

3
4
!ω

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



b. Determine the expression for the expectation value of the potential energy, 

V = mω
2

2
x2 . 

 
 

 
V = mω

2

2
x2 = mω

2

2
Ψ* x,t( )

−∞

∞

∫ x2Ψ x,t( )⎡⎣ ⎤⎦dx =
3α!2

4m
= 3!

2

4m
mω
!

⎛
⎝⎜

⎞
⎠⎟ =

3
4
!ω  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



c. What is the expectation value for the energy of the state?  How does your answer 
compare to the sum of T + V ?  

 

 

 

H = Ψ* − !2
2m

d2

dx2 +
mω 2

2 x2( )∫ Ψdx = − !2
2m Ψ* d2Ψ

dx2∫ dx + mω 2

2 Ψ*∫ x2Ψdx = T + V

H = T + V = 3
4
!ω + 3

4
!ω = 3

2
!ω

 

 
 

 
 

 
d. What is the probability of finding the particle in the range 0 ≤ x ≤1?  Let the 

α = 5 . 
 

 

 

P = Ψ*Ψdx = α
π

⎛
⎝⎜

⎞
⎠⎟

1
4

2α xe
−α
2
x2

e
iE
!
t⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

1

∫
0

1

∫
α
π

⎛
⎝⎜

⎞
⎠⎟

1
4

2α xe
−α
2
x2

e
− i E
!
t⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

P = 2α α
π

⎛
⎝⎜

⎞
⎠⎟

1
2

x2e−αx
2

dx
0

1

∫ = − α
π

xe−αx
2

0

1( ) + Erf α x⎡⎣ ⎤⎦
2

0

1

P = − α
π

e−α( ) + Erf α⎡⎣ ⎤⎦
2

−
Erf 0[ ]
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= − 5

π
e−5( ) + Erf 5⎡⎣ ⎤⎦

2
−
Erf 0[ ]
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

P = −0.0085 + 1
2
0.9875 − 0[ ] = 0.485 ~ 49%

 

This can be evaluated on Mathematica.  The code is below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Physics 220 Equations 

 

 

 

 

Formulas :
c =υλ

E = hυ = hc
λ

dS
dλ

= 2πhc
2

λ 5
1

e
hc
λkT −1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dS
dυ

= 2πhυ
3

c2
1

e
hυ
kT −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dS
dλ

= 2πckT
λ 4

λmax =
2.9 ×10−3m ⋅K

T
S =σT 4

eVstop = hf −φ

λ ' = λ + h
mc

1− cosφ( )

! = h
2π
; k = 2π

λ
;ω = 2π f

− !
2

2m
∇2ψ +Vψ = i! ∂ψ

∂t
= Eψ

Ê = i! ∂
∂t

p̂ = −i! ∂
dx

T̂ = − !
2

2m
d 2

dx2

Ĥ = − !
2

2m
d 2

dx2
+V

x̂ = x

O = ψ *Ôψ dr∫
P = ψ *ψ dx∫
En = n

2 π 2!2

2ma2
⎛
⎝⎜

⎞
⎠⎟

Ψn (x,t) =
2
a
sin knx( )e− i

En
!
t

Constants:
g = 9.8 m

s2

G = 6.67 ×10−11 Nm2

kg2

c = 3×108 m
s

σ = 5.67 ×10−8

kB = 1.38 ×10
−23 J

K

1eV = 1.6 ×10−19 J
1e = 1.6 ×10−19C
h = 6.63×10−34 Js;
me = 9.11×10

−31kg = 0.511MeV
c2

mp = 1.67 ×10
−27 kg = 938 MeV

c2

mn = 1.69 ×10
−27 kg = 939 MeV

c2

mE = 6 ×10
24 kg

RE = 6.4 ×10
6m

a = 0.5 ×10−10m

Useful Integrals:

xn dx = xn+1

n +1∫
sin xdx =∫ − cos x

cos xdx =∫ sin x

cos2 qx( )dx∫ = x
2
+ sin[2qx]

4q

sin2 qx( )dx∫ = x
2
− sin[2qx]

4q

cos3 qx( )dx∫ = 3sin[qx]
4q

+ sin[3qx]
12q

sin3 qx( )dx∫ = − 3cos[qx]
4q

+ cos[3qx]
12q

xcos2 qx( )
−a 2

a
2

∫ dx = 0

xsin2 qx( )
−a 2

a
2

∫ dx = 0

sin qx( )cos(qx)
−a 2

a
2

∫ dx = 0

eax dx = e
ax

a∫

e−ax
2

dx = π
a−∞

∞

∫

xe−ax
2

dx = 0
−∞

∞

∫

x2e−ax
2

dx = π

2a
3
2−∞

∞

∫

2α α
π

x2e−αx
2

dx = − α
π
x∫ e−αx

2

+
Erf α x⎡⎣ ⎤⎦

2
; Erf 0[ ]≡ 0

2πhc2

λ 5
1

e
hc
λkT −1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥400nm

700nm

∫ dλ = 1197 W
m2



 

T = k '
k
F
A

2

T + R = 1

T = 1

1+ V0
2

4E(V0 − E)
sinh2 8ma2

!2
(V0 − E)

⎛

⎝
⎜

⎞

⎠
⎟

; E <V0

T = 1
1+ a2k2

; E ~V0

T = 1

1+ V0
2

4E(E −V0 )
sin2 8ma2

!2
(E −V0 )

⎛

⎝
⎜

⎞

⎠
⎟

; E >V0

Hn (q) = −1( )n eq2 d
dq

⎛
⎝⎜

⎞
⎠⎟

n

e−q
2

; q = mω
2! x

Yl
ml θ ,φ( ) = ε 2l +1( )

4π
l − ml( )!
l + ml( )!e

imφPl
ml cosθ( ); ε =

−1( )ml ml ≥ 0
1 ml ≤ 0

⎧
⎨
⎪

⎩⎪

Pl
ml cosθ( ) = 1− cos2θ( )

ml
2 d

d cosθ
⎛
⎝⎜

⎞
⎠⎟
ml

Pl cosθ( )

Pl cosθ( ) = 1
2l l!

d
d cosθ

⎛
⎝⎜

⎞
⎠⎟
l

cos2θ −1( )l

Ln−l−1
2l+1 2r

na( ) = −1( )2l+1 na
2( )2l+1 d

dr( )2l+1 Ln+2l 2r
na( )

Ln+2l 2r
na( ) = e 2 rna na

2( )n+2l d
dr( )n+2l e− 2 rna 2r

na( )n+2l( )
ψ nlml

= 2
na( )3 n − l − a( )!

2n n + l( )!⎡⎣ ⎤⎦
3 e

− 2 rna 2r
na( )l Ln−l−1

2l+1 2r
na( )⎡⎣ ⎤⎦Yl

ml θ ,φ( )

a
±
= 1

2m!ω
∓ip +mω x( )

H = a
±
a
∓
± 1
2( )!ω

L± = Lx ± iLy

L2 = −!2 1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ +

1
sin2θ

∂2

∂φ 2
⎡

⎣
⎢

⎤

⎦
⎥

Lz = −i! ∂
∂φ

P = ψ *ψ d 3r = ψ *ψ r2 dr sinθ dθd
0

∞

∫
0

π

∫
0

2π

∫∫ φ

 


