
Physics 220 
 

Exam #2 
 

May 23 – May 30, 2014 
 

Name___________________________________ 
 

 
Please read and follow these instructions carefully: 
 

• Read all problems carefully before attempting to solve them. 
• Your work must be legible, with clear organization, and you must show all work. 
• You will not receive full credit if incorrect work or explanations are mixed in with 

correct work.  So erase or cross out anything you don’t want graded. 
• Make explanations complete but brief.  Do not write a lot of prose. 
• Include diagrams. 
• Show what goes into a calculation, not just the final number.  For example

  

� 

! p ≈ m " v = 5kg( ) × 2 m
s( ) =10 kg⋅m

s  
• Go for partial credit.  If you cannot do some portion of a problem, invent a 

symbol and/or value for the quantity you can’t calculate (explain that you are 
doing this), and use it to do the rest of the problem. 

• Each free-response part is worth 10 points. 
• You may use your textbook, class notes, and/or Mathematica to solve the 

problems.  If you use Mathematica, make sure you show what goes into the 
calculation, not just “done on Mathematica.”  Set the entire problem up and then 
feel free to evaluate the integrals or the like. 

• Not that this will help, but you cannot 
consult any other texts or the Internet for 
solutions. 

• You are not to consult any other student or 
instructor with the completion of this exam. 

• The exam will be collected electronically.  
Please email me your solutions as a .pdf file 
on or before 5pm, Friday, May 30, 2014. 

 
 
 

 
I affirm that I have carried out my academic endeavors with full academic honesty. 

 
_______________________________________ 
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1. Consider reflection from a step potential of height V0  with E >V0  but now with an 
infinitely high wall added at a distance a  from the step as shown below. 
a. What is ψ (x)  in each region?  

 
The wave functions in each region are given by:  

 

x < 0 : ψ (x) = Aeikx + Be− ikx; k = 2mE
!

0 < x < a :ψ (x) = Ceik 'x + De− ik 'x; k ' =
2m E −V0( )
!

 .  Next we impose boundary 

conditions for the continuity of the wave function and its first derivative at x = 0 .  

We have 
ψ@x = 0 : A + B = C + D
ψ '@x = 0 : ik(A − B) = ik '(C − D)

.  Next we have one more boundary 

condition that the wave function must vanish at x = a .  We have 
ψ = 0@x = a : Ceik 'a + De− ik 'a = 0 .  We have three equations in four unknown 
coefficients so we can express the wave functions in terms of a single unknown 

amplitude A  .  Doing this we find:  

A = C
2
1+ k '

k
− e2ik 'a + k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥

B = C
2
1− k '

k
− e2ik 'a − k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥

D = −Ce2ik 'a

 .  Finishing 

the wave equation we have:  

x < 0 :ψ (x) = C
2
1+ k '

k
− e2ik 'a + k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥
eikx + C

2
1− k '

k
− e2ik 'a − k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥
e− ikx

0 < x < a : ψ (x) = Ceik 'x −Ce2ik 'ae− ik 'x
  

 
b. Show that the reflection coefficient at x = 0  is R = 1 .  This is different than the 

previously derived reflection coefficient without the infinite wall?  What is the 
physical reason that R = 1 in this case? 
 

R = B
A

⎛
⎝⎜

⎞
⎠⎟
* B
A
=

C
2
1− k '

k
− e−2ik 'a − k '

k
e−2ik 'a⎡

⎣⎢
⎤
⎦⎥

C
2
1+ k '

k
− e−2ik 'a + k '

k
e−2ik 'a⎡

⎣⎢
⎤
⎦⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

C
2
1− k '

k
− e2ik 'a − k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥

C
2
1+ k '

k
− e2ik 'a + k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 1   

after some easy algebra.  The reason why the reflection coefficient has to be 
identically unity is that what ever may pass the barrier will be reflected back from 
the infinite wall; so all incident particles will be reflected.   
 

c. Which part of the wave function represents a leftward moving particle at x ≤ 0 ?  
Show that this part of the wave function is an eigenfunction of the momentum 
operator and calculate the eigenvalue.  Is the total wave function for x ≤ 0  an 
eigenfunction of the momentum operator? 



The part of the wave function that represents the left moving particle for x ≤ 0 is 
given by Be− ikx .   To see if this is an eigenfunction of the momentum operator and 
determine the eigenvalue, we apply the momentum operator.  We have 

 
−i! ∂

∂x
Be− ikx( ) = −i! −ik( )Be− ikx = −!kBe− ikx  therefore the eigenvalue of the 

momentum operator is  −!k . 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. A particle moves in one dimension in the potential V (x) =V0 ln
x
x0

⎛
⎝⎜

⎞
⎠⎟

 for x > 0 , where 

x0  and V0  are constants with units of length and energy, respectively.  There is an 
infinite potential barrier located at x = 0 .   The particle drops from the first excited 
state with energy E1 into the ground state with energy E0 , by emitting a photon with 
energy E1 − E0 .  Show that the frequency of the photon emitted by this particle is 
independent of the mass of the particle.  (Hint:  Define a parameter, swhere s = mx2 .)  

 

The Schrodinger equation here is given by 
 
− !

2

2m
d 2ψ
dx2

+V0 ln
x
x0

⎛
⎝⎜

⎞
⎠⎟
ψ = Eψ  .  Using 

the hint above, we rewrite the SWE as 
 
− !

2

2
d 2ψ
ds2

+ V0
2
ln s

s0

⎛
⎝⎜

⎞
⎠⎟
ψ = Eψ .  Splitting up 

the log functions and introducing a parameter C  that has units of length
2

mass
 we can 

write
 
− !

2

2
d 2ψ
ds2

+ V0
2
ln s

C
⎛
⎝⎜

⎞
⎠⎟ψ = E + V0

2
ln s0

C
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
ψ .  The dependence of the energy on 

mass is through s0  and changing the mass has the effect of adding the same offset to 
all the energy levels.  Therefore although the energy may depend on mass, the 
difference in energy levels does not and thus the frequency of the emitted photon does 
not depend on the mass of the particle.  

 
 

V(x) 

x 
x = a x = 0 

V = 0 

V = V0 

E 



3. Consider a double delta function potential given by V x( ) = −α δ x + a( ) +δ x − a( )⎡⎣ ⎤⎦  
where α  and a  are positive constants.   

 
a. Sketch this potential and determine the number of bound states it posses. What are 

the allowed energies, for 
 
α = !

2

ma
 and 

 
α = !

2

4ma
?  Sketch the wave function. 

  
 
 
The potential looks like,   

 
 
 
 
 
The solutions split themselves in to even and odd.  To determine the number of 
bound states let’s write the wave functions for the even solutions.  We have:  

ψ (x) =

Ae−kx x > a

B ekx + e−kx( ) − a < x < a

Aekx x < −a

⎧

⎨
⎪⎪

⎩
⎪
⎪

 .  Next continuity at x = a  gives 

Ae−ka = B eka + e−ka( )→ A = B e2ka +1( )  The derivative is discontinuous, so we use 

the ideas in problem #5, where 
 
Δ dψ

dx
⎛
⎝⎜

⎞
⎠⎟ = − 2mα

!2
ψ (a)  .  Evaluating the left hand 

side, we have 

 

−kAe−ka − B keka + ke−ka( ) = − 2mα
!2

Ae−ka → A + B e2ka −1( ) = 2mα
!2k

A

B e2ka −1( ) = A 2mα
!2k

−1⎛
⎝⎜

⎞
⎠⎟ = B e2ka +1( ) 2mα

!2k
−1⎛

⎝⎜
⎞
⎠⎟

e2ka −1= e2ka 2mα
!2k

−1⎛
⎝⎜

⎞
⎠⎟ +

2mα
!2k

−1⎛
⎝⎜

⎞
⎠⎟ → e−2ka = !2k

mα
−1⎛

⎝⎜
⎞
⎠⎟

 

This is an equation that’s transcendental and must be solved graphically.  

Graphing the results in Mathematica, we have, defining z = 2ka  and 
 
c = !2

2amα
 

and plotting e− z = cz −1 , the solution(s) is(are):  z = 1.2785  using the find root 
command.  Thus for the even solutions we have ONE bound state and the energy 
of the bound state is given through k  and we have, 

 
k2 = − 2mE

!2
= z
2a

⎛
⎝⎜

⎞
⎠⎟
2

→ E = −
1.278( )2
8

!2

ma2
⎛
⎝⎜

⎞
⎠⎟

 . 

 

V(x) 

x 
-a a 



, where e− z is the blue curve and 
cz −1 is the red curve. 

  
Now let’s do the odd solutions.  We have for the wave functions for the bound 

states (if there are any) given by ψ (x) =

Ae−kx x > a

B ekx − e−kx( ) − a < x < a

−Aekx x < −a

⎧

⎨
⎪⎪

⎩
⎪
⎪

. Next 

continuity at x = a  gives Ae−ka = B eka − e−ka( )→ A = B e2ka −1( )  The derivative is 

discontinuous, so we use the ideas in problem #5, where 
 
Δ dψ

dx
⎛
⎝⎜

⎞
⎠⎟ = − 2mα

!2
ψ (a)  .  

Evaluating the left hand side, we have 

 

−kAe−ka − B keka + ke−ka( ) = − 2mα
!2

Ae−ka

B e2ka +1( ) = A 2mα
!2k

−1⎛
⎝⎜

⎞
⎠⎟ = B e2ka −1( ) 2mα

!2k
−1⎛

⎝⎜
⎞
⎠⎟

e2ka +1= e2ka 2mα
!2k

−1⎛
⎝⎜

⎞
⎠⎟ −

2mα
!2k

+1→ e−2ka = 1− !
2k
mα

⎛
⎝⎜

⎞
⎠⎟

 . This is another 

transcendental equation.  Using the same definitions, as before, we will plot
e− z = 1− cz .  Using Mathematica again, we have 

 for the plot.  Here there may or may not 
be a solution. Both graphs have their y-intercepts at 1, but if c is too large (α  too 
small), there may be no intersection (red line), whereas if c  is smaller (yellow 
line) there will be. (Note that z = 0  which implies that k = 0 is not a solution, since 
ψ  is then non-normalizable.) So there could be an odd solution for c <1  or 
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α > !

2

2ma
.  So we have one bound state if 

 
α ≤ !

2

2ma
 and two if 

 
α > !

2

2ma
.  So, for 

 

α = !
2

ma
→ c = 1

2

even : e− z = z
2
−1⇒ z = 2.21772

odd : e− z = 1− z
2
⇒ z = 1.59362

⎧

⎨
⎪⎪

⎩
⎪
⎪

 .   The energies of the two 

bound states are given by 
 
E = −0.615 !2

ma2
⎛
⎝⎜

⎞
⎠⎟

 or 
 
E = −0.317 !2

ma2
⎛
⎝⎜

⎞
⎠⎟

 using the 

formula for the even solutions.  If 

 
α = !

2

4ma
→ c = 2⇒ e− z = 2z −1→ z = 0.738835  and energy 

 
E = −0.0682 !2

ma2
⎛
⎝⎜

⎞
⎠⎟

. The wave functions look like  
 
 
 
 

 
 
 
 
 

b. What is the transmission coefficient for this potential? 
 

The wave functions here are given by:  ψ (x) =
Ae− ikx + Be− ikx x < −a

Ceikx + De− ikx − a < x < a

Feikx x > a

⎧

⎨
⎪⎪

⎩
⎪
⎪

.	  

Imposing	  boundary	  conditions	  we	  have	  

 

ψ@− a : Ae− ika + Beika = Ce− ika + Deika

ψ@+ a : Ceika + De− ika = Feika

discψ '@− a :Δ dψ
dx

⎛
⎝⎜

⎞
⎠⎟ = − 2mα

!2
ψ −a( ) :

ik Ce− ika − Deika( )− ik Ae− ika − Beika( ) = − 2mα
!2

Ae− ika + Beika( )

discψ '@+ a :Δ dψ
dx

⎛
⎝⎜

⎞
⎠⎟ = − 2mα

!2
ψ a( ) :

ikFeika − ik Ceika − De− ika( ) = − 2mα
!2

Feika

	  .	  	  

Next	  we	  follow	  the	  example	  for	  the	  finite	  potential	  barrier	  in	  the	  homework.	  	  
After	  a	  lot	  of	  algebra	  the	  transmission	  coefficient	  is	  given	  by	  

even odd 



 

T = F
A

2

=
8 !2k
2mα

⎛
⎝⎜

⎞
⎠⎟

4

8 !2k
2mα

⎛
⎝⎜

⎞
⎠⎟

4

+ 4 !2k
2mα

⎛
⎝⎜

⎞
⎠⎟

2

+ 4 !2k
2mα

⎛
⎝⎜

⎞
⎠⎟

2

−1
⎛

⎝
⎜

⎞

⎠
⎟ cos 4ka( )− 4 !2k

2mα
⎛
⎝⎜

⎞
⎠⎟
sin 4ka( )

 
 

 
4. Suppose that you have a particle of mass m  moving in a harmonic oscillator 

potential.   
a. Starting from the ground state, what is the energy and wave function for the 5th 

excited state the using the raising and/or lowering operators?   
b. What are the expectation value of the potential and kinetic energies for this state?  

Are they as expected?  
 
See the external .pdf file associated with this solution. 
 

5. Consider a particle of mass m  in a one-dimensional potential V (x) = − !
2

2m
Pδ (x) , 

where P  is a positive quantity and δ x( )  is the Dirac delta function. 
 

a. Show that the dimension of P  is inverse length? 
 

 

[!]= J ⋅ s
[m]= kg
[δ ]= m−1

[V ]= J

∴ J = J 2 ⋅ s2

kg ⋅m
⎛
⎝⎜

⎞
⎠⎟
P[ ]→ P[ ] = J ⋅ kg ⋅m

J 2 ⋅ s2
= kg ⋅m ⋅ s2

kg ⋅m2 ⋅ s2
= 1
m

  

 
 

b. Show that for this potential, an eigenfunction ψ (x)  satisfies 
ψ '(0−)−ψ '(0+) = Pψ (0) , where ψ '(0−) andψ '(0+)  are the values of the 
derivatives of the eigenfunction immediately on the left and right, respectively, of 
the delta function potential and ψ (0) is the value of the eigenfunction at x = 0 . 
 



 

d 2ψ
dx2

= − 2m
!2

E −V[ ]ψ

d 2ψ
dx2

dx
−ε

ε

∫ = dψ
dx −ε

ε

=ψ ' ε( )−ψ ' −ε( ) = − 2m
!2

Eψ dx +
−ε

ε

∫
2m
!2

Vψ dx
−ε

ε

∫

ψ ' ε( )−ψ ' −ε( ) = 0 − 2m!
2

2m!2
Pδ (x)ψ dx

−ε

ε

∫ = −Pψ (0)

∴Pψ (0) =ψ ' −ε( )−ψ ' ε( ) =ψ ' 0 −( )−ψ ' 0 +( )

  

 
 

c. What is the energy for a bound state? 
 

The energy of the bound state is given by solving the SWE. 

 

− !
2

2m
d 2ψ
dx2 +Vψ = Eψ

− !
2

2m
d 2ψ
dx2 − !

2

2m
Pδ (x)ψ = Eψ

Bound states: E < 0
d 2ψ
dx2 + Pδ (x)ψ = 2mE

!2 ψ = k2ψ

 

 
The eigenfunctions must vanish at x = ±∞ , so we have solutions 

ψ =
Ae−kx x > 0

Bekx x < 0

⎧
⎨
⎪

⎩⎪
  

Next we have that the wave function is continuous at x = 0  and this produces 
ψ (0−) =ψ (0+)→ B = A . 
 
Then we take the derivatives of the wave function above and below x = 0  and 
then use the results from part b. 

 

ψ '(x−) = Akekx →ψ '(0−) = Ak
ψ '(x+) = −Ake−kx →ψ '(0+) = −Ak
∴ψ '(0−)−ψ '(0+) = Pψ (0)→ 2Ak = PA

k = P
2
→ k2 = P

2

4
= 2mE
!2

→ E = !
2P2

8m

 

 
6.   An electron (mass m  and charge e ) is confined inside a hollow sphere of radius a  

and the spherical wall is impenetrable.   
 

a. What is the ground state energy? 



So the solution starts with the SWE in spherical coordinates.  However, I’m going 
to take a shortcut and start with the radial equation.  The radial equation looks like 

 

1
R
d
dr

r2 dR
dr

⎛
⎝⎜

⎞
⎠⎟ −

2mr2

!2
V − E( ) = l l +1( )  .  Making the change of variables R = u

r
 

we have for the derivatives dR
dr

= d
dr

u
r

⎛
⎝⎜

⎞
⎠⎟ = − u

r2
+ 1
r
du
dr

 and multiply through by 

r2  gives r2 dR
dr

= −u + r du
dr

 .  Now take the next derivative.  We get 

d
dr

−u + r du
dr

⎛
⎝⎜

⎞
⎠⎟ = r

d 2u
dr2

 .  Inserting this expression into the SWE we get 

 
− !

2

2m
d 2u
dr2

+ V + !
2

2m
l l +1( )
r2

⎡

⎣
⎢

⎤

⎦
⎥u = Eu .  In the ground state n = 1  and l = 0 , so we 

have 
 
− !

2

2m
d 2u
dr2

+Vu = Eu , where V =
0 r < a
∞ r > a

⎧
⎨
⎪

⎩⎪
 and we want to look for the 

electron in a region r < a , so the radial wave equation reduces to 

 

d 2u
dr2

= − 2mE
!2

u = −k2u→ u = Asin kr( ) + Bcos kr( ) .  Next we want the wave 

function to be finite as r→∞  so B = 0  and the solution is u = Asin kr( )  .  IN 

terms of R , R = u
r
=
Asin kr( )

r
.  Lastly, to determine the energy, we note at 

 

r = a, u = 0 = Asin ka( )→ ka = nπ → k2 = 2mE
!2

= n
2π 2

a2

∴En=1 =
!2π 2

2ma2

. 

 
b. What is the ground state wave function? 

 

The ground state wave function is given by R = Asin(kr)
r

=
Asin nπ

a
r⎛

⎝⎜
⎞
⎠⎟

r
.  

Normalizing the solution (where for the ground state n = 1 ) we have, 

1= A2
0

∞

∫
sin2 πr

a( )
r2

dr→1= A2 π 2

2a
⎛
⎝⎜

⎞
⎠⎟
→ A = 2a

π
 .  Thus the ground state wave 

function ψ 0 (r) =
2a
π

sin πr
a( )

r
. 

 
 

c.  What is the first excited state energy and wave function? 
 



To determine the wave functions we return to the SWE above, where 

 
− !

2

2m
d 2u
dr2

+ V + !
2

2m
l l +1( )
r2

⎡

⎣
⎢

⎤

⎦
⎥u = Eu .   Multiplying through by 

 
− 2m
!2

 we get 

 

d 2u
dr2

=
l l +1( )
r2

− 2mE
!2

⎡
⎣⎢

⎤
⎦⎥
u = l l +1( )

r2
− k2⎡

⎣⎢
⎤
⎦⎥
uwhere for r < a, V = 0 .  The general 

solutions to this are given in the hint below, and they are spherical Bessel or 
Neumann functions.  But, the Neumann functions blow up as r→ 0  we choose 
the Bessel functions.  And the boundary condition at r = a  gives 

u(a) = 0 = Aajl ka( )→ jl ka( ) = 0→ k = 1
a
βnl
2  where the solutions are computed 

numerically and βnl
2 is the nth zero of the lth Bessel function.  The energies are 

given by 
 
Enl =

!2

2ma
βnl
2 .  For this problem let’s look at (n,l) = (1,0) .  For l = 0  we 

need the zeroth order Bessel function, jo =
sin x
x

.  Therefore, 

R(r) = u
r
= Ajo(kr) = A

sin(kr)
kr

.  Normalizing we have 

1= A2
0

∞

∫
sin2 kr( )
k2r2

dr→1= A2 π
2k

⎛
⎝⎜

⎞
⎠⎟ → A = 2k

π
.  Thus the first excited state 

wave function is R(r) = 2k
π

sin(kr)
kr

⎛
⎝⎜

⎞
⎠⎟ .  

 
Evaluating the energy we need the first zero of the zeroth Bessel function.  From 
Mathematica, we have β = 2.40483  using the BesselJZero command, and the 

energy is then 
 
E10 =

!2

2ma
2.40483( )2 ~ 3!

2

ma
. 

 
Hint:  The following may be useful.  The general solution to the equation

 
− !

2

2m
d 2u
dr2

+ V + !
2

2m
l l +1( )
r2

⎡

⎣
⎢

⎤

⎦
⎥u = Eu  is u(r) = Arjl (kr)+ Brnl (kr) , where 

jl (x) = (−1)
l 1
x
d
dx

⎛
⎝⎜

⎞
⎠⎟
l sin x
x

 are the spherical Bessel functions of order l  and 

nl (x) = −(−1)l 1
x
d
dx

⎛
⎝⎜

⎞
⎠⎟
l cos x
x

are the spherical Neumann functions of order l . 

 
7.   The solution for the Schrodinger equation for the ground state of a hydrogen atom is 

given by ψ 0 =
1
πa0

3
e
− r
a0  where, a0  is the Bohr radius and r  is the distance from the 

origin.   



 
a. What is the most probable value of r  to find the electron? 

 
From the probability or radial density function we have 

4πr2 ψ 0
2 = 4πr2 1

πa0
3
e
− r
a0

2

= 4πr
2

πa0
3 e

−2r
a0 .  The most probable value is where this 

is a maximum.  So we’ll take the derivative of this expression and set it equal to 
zero and solve for r . 
 
d
dr

4r2

a0
3 e

−2r
a0

⎛

⎝⎜
⎞

⎠⎟
= 4
a0
3 2re

−2r
a0 − 2

a0
r2e

−2r
a0

⎛

⎝⎜
⎞

⎠⎟
= 0

1− r
a0

= 0→ r = a0

  

 
b. What is the expectation value of the position? 

 
 

The expectation value is given in the usual way: 

r = ψ *rψ r2 dr∫ = 1
πa0

3 r3e
−2r
a0 dr

0

∞

∫ = 1
πa0

3

6a0
4

16
⎡

⎣
⎢

⎤

⎦
⎥ =

6a0
16π

= 1.18a0   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


