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Please read and follow these instructions carefully: 
 

• Read all problems carefully before attempting to solve them. 
• Your work must be legible, and the organization clear. 
• You must show all work, including correct vector notation. 
• You will not receive full credit for correct answers without adequate explanations. 
• You will not receive full credit if incorrect work or explanations are mixed in with 

correct work.  So erase or cross out anything you don’t want graded. 
• Make explanations complete but brief.  Do not write a lot of prose. 
• Include diagrams. 
• Show what goes into a calculation, not just the final number.  For example

  

� 

! p ≈ m " v = 5kg( ) × 2 m
s( ) =10 kg⋅m

s  
• Give standard SI units with your results unless specifically asked for a certain 

unit. 
• Unless specifically asked to derive a result, you may start with the formulas given 

on the formula sheet including equations corresponding to the fundamental 
concepts. 

• Go for partial credit.  If you cannot do some portion of a problem, invent a 
symbol and/or value for the quantity you can’t calculate (explain that you are 
doing this), and use it to do the rest of the problem. 

• Each free-response part is worth 10 points. 
• All Mathematica calculations need to be commented and printed out to earn full 

credit. 
 
 
 
 
 

I affirm that I have carried out my academic endeavors with full academic honesty. 
 
 

______________________________ 
 

Problem #1 /40 
Problem #2 /40 

Total /80 



1. Supose that a particle of mass m is in the first excited state of a harmonic osciallator 

potential, V = mω
2

2
x2 . 	

 
a. By using the raising and lowering operators, what are T and V for this state?   

Hints:  The wave functions for the harmonic oscillator are given by 

 
ψ n = mω

π!
⎛
⎝⎜

⎞
⎠⎟

1
4 1
2n n!

Hn
mω
!
x

⎛
⎝⎜

⎞
⎠⎟
e
−mω
2!

x2

, where Hn q( ) is a Hermite polynomial 

of order n .  In addition the raising and lowering operators are defined by 

 
a

±
= 1

2m!ω
∓ip +mω x( ) , and you may need a+ ψ n = n +1ψ n+1 and 

a− ψ n = n ψ n−1 . 
 

Space for calculation of T . 
We start by expressing the momentum and position operators in terms of the 

raising and lowering operators.  We have 
 
a

+
= 1

2m!ω
−ip +mω x( ) and 

 
a

−
= 1

2m!ω
+ip +mω x( ) .  Subtracting a− from a+ we can form an expression 

for p  and we have 
 
p = 2m!ω

2
i a+ − a−( ) .  To determine the expectation value 

of the kinetic energy, we will need to square the momentum operator and form the 
kinetic energy operator.  Squaring we have: 

 
T = p2

2m
= − 2m!ω

8m
a+ − a−( )2 = − !ω

4
a+a+ − a+a− − a−a+ + a−a−( ) .  Evaluating T , 

we have: 

 

T = ψ 1 Tψ 1 = − !ω
4

ψ 1 a+a+ψ 1 − ψ 1 a+a−ψ 1 − ψ 1 a−a+ψ 1 + ψ 1 a−a−ψ 1⎡⎣ ⎤⎦

T = − !ω
4

2 ψ 1 a+ψ 2 − ψ 1 a+ψ 0 − 2 ψ 1 a−ψ 2 + ψ 1 a−ψ 0⎡⎣ ⎤⎦

T = − !ω
4

2 3 ψ 1 ψ 3 − ψ 1 ψ 1 − 2 2 ψ 1 ψ 1 + 0 ψ 1 ψ −1⎡⎣ ⎤⎦

T = − !ω
4

−1− 2[ ]

T = 3!ω
4

. 

 
 
 
 
 



Space for calculation of V . 
Adding a− and a+ we can form an expression for x  and we have 

 
x = 2m!ω

2mω
a+ + a−( ) .  To determine the expectation value of the potential 

energy, we will need to square the position operator and form the potential energy 
operator.  Squaring we have: 

 
V = mω

2

2
x2 = 2m!ω

4m2ω 2 a+ + a−( )2 = !ω
4

a+a+ + a+a− + a−a+ + a−a−( ) .  Evaluating 

V , we have: 

 

V = ψ 1 Vψ 1 = !ω
4

ψ 1 a+a+ψ 1 + ψ 1 a+a−ψ 1 + ψ 1 a−a+ψ 1 + ψ 1 a−a−ψ 1⎡⎣ ⎤⎦

V = !ω
4

2 3 ψ 1 ψ 3 + ψ 1 ψ 1 + 2 2 ψ 1 ψ 1 + 0 ψ 1 ψ −1⎡⎣ ⎤⎦

V = !ω
4
1+ 2[ ]

V = 3!ω
4

 

 

Notice that 
 
H = 3!ω

2
is simply the sum of T and V , as it should be since 

 
En=1 = n + 1

2( )!ω = 1+ 1
2( )!ω = 3!ω

2
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



b. At what position(s) are you most and least likely to find the particle? 
 

To evaluate the position(s) that you are most/least likely to find the particle we 
need the wave function.  The first excited state wave function is: 

 

 

ψ n = mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
4 1
2n n!

Hn
mω
!
x

⎛
⎝⎜

⎞
⎠⎟
e
−mω
2!

x2

ψ 1 = mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
4 1
211!

H1
mω
!
x

⎛
⎝⎜

⎞
⎠⎟
e
−mω
2!

x2
 

We need to determine 
 
H1

mω
!
x

⎛
⎝⎜

⎞
⎠⎟

.  We can do this from 

Hn (q) = −1( )n eq2 d
dq

⎛
⎝⎜

⎞
⎠⎟

n

e−q
2

.  Evaluating we find 

 
H1(q) = −1( )1 eq2 d

dq
⎛
⎝⎜

⎞
⎠⎟

1

e−q
2

= −eq
2

−2qe−q
2( ) = 2q = 2mω

!
x .  Thus 

 
ψ 1 = mω

π!
⎛
⎝⎜

⎞
⎠⎟

1
4 mω
!
xe

−mω
2!

x2

.  The most/least likely location(s) are given by  

 

d
dx

ψ 1
*ψ 1( ) = 0→ d

dx
x2e

−mω
!
x2⎛

⎝⎜
⎞
⎠⎟
= 2xe

−mω
!
x2

− 2mω
!

xx2e
−mω
!
x2

= x 1− mω
!

x2⎛
⎝⎜

⎞
⎠⎟ = 0

x = 0; 1= mω
!

x2 → x = ± !
mω

 

 Thus the most likely places are at 
 
x = ± !

mω
and least likely is at x = 0 . 

 
I took the derivative and solved this by hand.  If you used Mathematica, the code 
is below. 

 

 
 
 
 
 
 
 
 



c. Suppose that the particle is in the ground state of the harmonic oscillator potential 
with frequency ω .    Suppose that the frequency of oscillation suddenly doubles 
so that ω ' = 2ω without initially changing the wave function, what are the new 
energy states associated with the particle?   

 

 

En,ω = n + 1
2( )!ω; n = 0,1,2,...→ En,ω = !ω

2
, 3!ω
2
, 5!ω
2
,...

En,2ω = n + 1
2( )! 2ω( ) = 2n +1( )!ω; n = 0,1,2,...→ En,2ω = !ω , 3!ω ,5!ω ,...

 

 
 
 

d. For this particle in the first excited state of the harmonic oscillator potential with 
frequency ω , when the frequency suddenly doubles, what is the probability that a 
measurement of the energy would return  !ω ?  Hint:  In this case the probability 
is given by ψ ψ ' , where ψ ' is the new wave function with frequency 2ω and 
ψ is the original wave function with frequencyω . 

 

 
ψ 1 = mω

π!
⎛
⎝⎜

⎞
⎠⎟

1
4 mω
!
xe

−mω
2!

x2

and 

 
ψ 1

' = 2mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
4 2mω
!

xe
−2mω
2!

x2

= 2
3
4
mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
4 mω
!
xe

−2mω
2!

x2

= 2
3
4 e

−mω
2!

x2

ψ 1 . 

 
The probability is 

 

P = ψ 1
' ψ 1 = 2

3
4
mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
2 mω
!

x2e
−3mω
2!

x2

dx =
−∞

∞

∫ 2
3
4
mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
2 mω
!

8π!3

4 × 27m3ω 3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P = 2
3
4
m3ω 3

π!3
2π!3

27m3ω 3 = 2
5
4
1
27

= 0.458 = 45.8%

. 

 
I did the integral by hand.  If you used Mathematica, the code for the integral and 
its evaluation is below. 

 

 
 



2.   Suppose that you have an electron of charge −e and mass m in the state ψ 321 , where 

ψ 321 = 4
81 30

a− 32 r
a( )2 e−

r
3aYl

m θ ,φ( ) .   

a. What is the most probable value of the radial coordinate? 
 
 The most probable value is where the derivative of the radial probability density 

function vanishes.  The probability density function is given by 
dP
dr

= r2 R32
2 = r2 4

81 30
a− 32 r

a( )2 e−
r
3a⎡

⎣
⎢

⎤

⎦
⎥

2

= 16
196830a7

⎛
⎝⎜

⎞
⎠⎟ r

6e
−2r
3a  

 
Taking the derivative and setting the result equal to zero gives the most probable 
value of the radial coordinate.  We have 
 
d
dr

dP
dr

⎛
⎝⎜

⎞
⎠⎟ =

d
dr

16
196830a7

⎛
⎝⎜

⎞
⎠⎟ r

6e
−2r
3a⎡

⎣
⎢

⎤

⎦
⎥ = 0

6r5e
−2r
3a − 2r

6

3a
e
−2r
3a = 0

r = 9a

 

 
 I took the derivative by had.  If you use Mathematica, the code is below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



b. What is the probability of finding the electron between the nucleus and the four 
times the Bohr radius, 4a ?  Hints:  You may need the following integrals:  

sinnθ dθ =∫ − sin
n−1θ cosθ
n

+ n −1
n

sinn−2θ dθ∫ ; n ≥ 0

cosnθ dθ =∫ − cos
n−1θ sinθ
n

+ n −1
n

cosn−2θ dθ∫ ; n ≥ 0

xneax = e
ax

a
xn − nx

n−1

a
+
n n −1( )xn−2

a2
− ...

−1( )n n!
an

⎛

⎝⎜
⎞

⎠⎟∫

. 

 
 There are two ways to do this problem.  This is the long version.  To determine 

the probability, integrate the wave function over all space.  To do this we need to 
know what the wave function looks like and thus we need to evaluate the 
spherical harmonic corresponding to this state. 

 

 

Yl
ml θ ,φ( ) = ε 2l +1( )

4π
l − ml( )!
l + ml( )!e

imφPl
ml cosθ( ); ε =

−1( )ml ml ≥ 0
1 ml ≤ 0

⎧
⎨
⎪

⎩⎪

Pl
ml cosθ( ) = 1− cos2θ( )

ml
2 d

d cosθ
⎛
⎝⎜

⎞
⎠⎟
ml

Pl cosθ( )

Pl cosθ( ) = 1
2l l!

d
d cosθ

⎛
⎝⎜

⎞
⎠⎟
l

cos2θ −1( )l
 

 Thus, 

Y2
1 = −1( )1 5( )

4π
1( )!
3( )!e

iφP1
1 cosθ( ) = − 5

24π
1− cos2θ( )12 d

d cosθ
⎛
⎝⎜

⎞
⎠⎟
1

P2 cosθ( )⎡

⎣
⎢

⎤

⎦
⎥eiφ

Y2
1 = − 5

24π
sinθ d

dx
1
222!

d
dx

d
dx

x2 −1( )2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥e

iφ

 

 
 Where we have defined x = cosθ .  Performing the derivatives and constructing 

the spherical harmonic we have 

Y2
1 = − 5

24π
sinθ 3cosθ[ ]eiφ where we have converted the result back to a 

function of theta. 
 

The simplified wave function for this state is  
 

ψ 321 = − 1
81 π

a− 72r2e
− r
3a sinθ cosθeiφ  

 
 The probability is P = ψ 321 ψ 321 . 
 Evaluating: 



P = ψ 321 ψ 321 = 1
81 π

a− 72⎛
⎝⎜

⎞
⎠⎟
2

r2e
− r
3a⎛

⎝⎜
⎞
⎠⎟

2

r2 dr
0

4a

∫ sinθ cosθ( )2 sinθ dθ
0

π

∫ dφ
0

2π

∫

P = 2π
6561πa7

r6e
−2r
3a dr

0

4a

∫
⎡

⎣
⎢

⎤

⎦
⎥ sin3θ dθ

0

π

∫ − sin5θ dθ
0

π

∫
⎡

⎣
⎢

⎤

⎦
⎥

P = 2
6561a7

3
8
a7 32805 − 462973

e
8
3

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
4
3
− 16
15

⎡
⎣⎢

⎤
⎦⎥
= 15265
787320

P = 0.019 = 1.9%

 

 
The radial integral was evaluated on Mathematica and the theta and phi integrals 
were evaluated by hand.  The mathematica code for the radial (and theta if you 
did it on Mathematica) integrals are shown below. 

 
  

 
 
 The short version of doing this problem, doesn’t involve evaluating the spherical 

harmonic at all.  We have 
 

P = ψ 321 ψ 321 = 4
81 30a3a2

⎛
⎝⎜

⎞
⎠⎟

2

r2e
− r
3a⎛

⎝⎜
⎞
⎠⎟

2

r2 dr
0

4a

∫ Y2
1 sinθ dθ dφ

0

2π

∫
0

π

∫
⎡

⎣
⎢

⎤

⎦
⎥

P = 8.13×10
−5

a7
r6e

−2r
3a dr

0

4a

∫
⎡

⎣
⎢

⎤

⎦
⎥ 1[ ]

P = 8.13×10
−5

a7
3
8
a7 32805 − 462973

e
8
3

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= 8.13×10−5

a7
⎛
⎝⎜

⎞
⎠⎟
× 238.5a7( )

P = 0.019 = 1.9%

 

 
 And the radial integral was done directly above on Mathematica and we used the 

fact that the spherical harmonics are normalized. 
 
 
 
 
 
 
 



c. Is the state ψ 321  an eigenstate of the z-component of angular momentum?  If it is, 
what is Lz ?  If it is not, explain why it is not.    

 

 
LZ ψ 321 = −i! d

dφ
−3 5

24π
4

81 30
a− 32 r

a( )2 e−
r
3a sinθ cosθeiφ

⎛
⎝⎜

⎞
⎠⎟
= −i! i( )ψ 321 = !ψ 321

 
Thus the state ψ 321  an eigenstate of the z-component of angular momentum with 
eigenvalue  ! .  The expectation value of the z-component of the angular 
momentum is  Lz = ψ 321 Lzψ 321 = ! ψ 321 ψ 321 = ! . 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
d. Suppose that the electron transitions form the state ψ 321 to the state ψ 100 .  In 

this process a photon is emitted with energy ΔE .  What is the energy of the 
emitted photon in eV ? 
 

 
ΔE = Eupper − Elower = −13.6eV

nupper
2 − −13.6eV

nlower
2

⎛
⎝⎜

⎞
⎠⎟
= 13.6eV

nlower
2 − 13.6eV

nupper
2

ΔE = 13.6eV 1
12

− 1
32

⎛
⎝⎜

⎞
⎠⎟ = 12.1eV

 

 
 
 
 
 
 
 
 
 
 
 



Physics 220 Equations 

   

 

 

 

Formulas :
c =υλ

E = hυ = hc
λ

dS
dλ

= 2πhc
2

λ 5
1

e
hc
λkT −1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dS
dυ

= 2πhυ
3

c2
1

e
hυ
kT −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dS
dλ

= 2πckT
λ 4

λmax =
2.9 ×10−3m ⋅K

T
S =σT 4

eVstop = hf −φ

λ ' = λ + h
mc

1− cosφ( )

! = h
2π
; k = 2π

λ
;ω = 2π f

− !
2

2m
∇2ψ +Vψ = i! ∂ψ

∂t
= Eψ

Ê = i! ∂
∂t

p̂ = −i! ∂
dx

T̂ = − !
2

2m
d 2

dx2

Ĥ = − !
2

2m
d 2

dx2
+V

x̂ = x

O = ψ *Ôψ dr∫
P = ψ *ψ dx∫
En = n

2 π 2!2

2ma2
⎛
⎝⎜

⎞
⎠⎟

Ψn (x,t) =
2
a
sin knx( )e− i

En
!
t

Constants:
g = 9.8 m

s2

G = 6.67 ×10−11 Nm2

kg2

c = 3×108 m
s

σ = 5.67 ×10−8

kB = 1.38 ×10
−23 J

K

1eV = 1.6 ×10−19 J
1e = 1.6 ×10−19C
h = 6.63×10−34 Js;
me = 9.11×10

−31kg = 0.511MeV
c2

mp = 1.67 ×10
−27 kg = 938 MeV

c2

mn = 1.69 ×10
−27 kg = 939 MeV

c2

mE = 6 ×10
24 kg

RE = 6.4 ×10
6m

a = 0.5 ×10−10m

Useful Integrals:

xn dx = xn+1

n +1∫
sin xdx =∫ − cos x

cos xdx =∫ sin x

cos2 qx( )dx∫ = x
2
+ sin[2qx]

4q

sin2 qx( )dx∫ = x
2
− sin[2qx]

4q

cos3 qx( )dx∫ = 3sin[qx]
4q

+ sin[3qx]
12q

sin3 qx( )dx∫ = − 3cos[qx]
4q

+ cos[3qx]
12q

xcos2 qx( )
−a 2

a
2

∫ dx = 0

xsin2 qx( )
−a 2

a
2

∫ dx = 0

sin qx( )cos(qx)
−a 2

a
2

∫ dx = 0

e±ax dx = ± e
±ax

a∫

e−ax
2

dx = π
a−∞

∞

∫

xe−ax
2

dx = 0
−∞

∞

∫

x2e−ax
2

dx = π

2a
3
2−∞

∞

∫

2α α
π x2e−αx

2

dx =∫ − α
π xe

−αx2

+ Erf[ α x]
2

; Erf[0]≡ 0

2πhc2

λ 5
1

e
hc
λkT −1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥400nm

700nm

∫ dλ = 1197 W
m2



 

T = k '
k
F
A

2

T + R = 1

T = 1

1+ V0
2

4E(V0 − E)
sinh2 8ma2

!2
(V0 − E)

⎛

⎝
⎜

⎞

⎠
⎟

; E <V0

T = 1
1+ a2k2

; E ~V0

T = 1

1+ V0
2

4E(E −V0 )
sin2 8ma2

!2
(E −V0 )

⎛

⎝
⎜

⎞

⎠
⎟

; E >V0

Hn (q) = −1( )n eq2 d
dq

⎛
⎝⎜

⎞
⎠⎟

n

e−q
2

; q = mω
2! x

Yl
ml θ ,φ( ) = ε 2l +1( )

4π
l − ml( )!
l + ml( )!e

imφPl
ml cosθ( ); ε =

−1( )ml ml ≥ 0
1 ml ≤ 0

⎧
⎨
⎪

⎩⎪

Pl
ml cosθ( ) = 1− cos2θ( )

ml
2 d

d cosθ
⎛
⎝⎜

⎞
⎠⎟
ml

Pl cosθ( )

Pl cosθ( ) = 1
2l l!

d
d cosθ

⎛
⎝⎜

⎞
⎠⎟
l

cos2θ −1( )l

Ln−l−1
2l+1 2r

na( ) = −1( )2l+1 na
2( )2l+1 d

dr( )2l+1 Ln+2l 2r
na( )

Ln+2l 2r
na( ) = e 2 rna na

2( )n+2l d
dr( )n+2l e− 2 rna 2r

na( )n+2l( )
ψ nlml

= 2
na( )3 n − l − a( )!

2n n + l( )!⎡⎣ ⎤⎦
3 e

− 2 rna 2r
na( )l Ln−l−1

2l+1 2r
na( )⎡⎣ ⎤⎦Yl

ml θ ,φ( )

a
±
= 1

2m!ω
∓ip +mω x( )

H = a
±
a
∓
± 1
2( )!ω

L± = Lx ± iLy

L2 = −!2 1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ +

1
sin2θ

∂2

∂φ 2
⎡

⎣
⎢

⎤

⎦
⎥

Lz = −i! ∂
∂φ

P = ψ *ψ d 3r = ψ *ψ r2 dr sinθ dθd
0

∞

∫
0

π

∫
0

2π

∫∫ φ

 


