Physics 220
Homework \#1
Spring 2017
Due Wednesday, 4/5/17

1. Consider the function $y=A x e^{-\frac{x}{2 a}}$ over the region $0 \leq x \leq \infty$. Perform the following integral on Mathemtatica $\left(\int_{0}^{\infty} y^{2} x^{2} d x\right)$ and set the result equal to one and determine the constant A.
2. Consider the following functions $y=4 x-2$ and $y=x^{2}+2 x-3$ over the region $-5 \leq x \leq 5$. Using Mathematica, plot both of these functions on the same graph over the region of $-5 \leq x \leq 5$. Label the axes and title the plot. Using the FindRoot command, what are the points of intersection? Lastly, using the Solve command, what are the points of intersection? How do your two results compare?
3. A particle of mass m is moving in one dimension in a potential $V(x, t)$. The wave function for the particle is $\Psi(x, t)=A x e^{-\left(\frac{\sqrt{k m}}{2 \hbar}\right) x^{x^{2}}} e^{-i\left(\frac{3}{2} \sqrt{\frac{k}{m}}\right) t}$ for $-\infty<x<\infty$, where A and k are constants.
a. Normalize the wave function and determine the constant A.
b. Using the normalized wave function, calculate $\langle x\rangle,\left\langle x^{2}\right\rangle,\langle p\rangle$, and $\left\langle p^{2}\right\rangle$.
c. Show that V is independent of t, and determine $V(x)$.
4. Determine which of the following one-dimensional wave functions represent state of definite momentum. For each wave function that does correspond to a state of definite momentum, determine the momentum.
a. $\psi(x)=e^{i k x}$
b. $\psi(x)=x e^{i k x}$
c. $\psi(x)=\sin (k x)+i \cos (k x)$
d. $\psi(x)=e^{i k x}+e^{-i k x}$
5. Griffith's problem 1.4.
6. Griffith's problem 1.5.
7. Suppose that ψ_{1} and ψ_{2} are two different solutions of the time-independent

Schrodinger wave equation with the same energy E.
a. Show that $\psi_{1}+\psi_{2}$ is also a solution with energy E.
b. Show that $c \psi_{1}$ is also a solution of the Schrodinger equation with energy E.
8. A particle of mass m is moving in one dimension near the speed of light so that the relation for the kinetic energy $E=\frac{p^{2}}{2 m}$ is no longer valid. Instead, the total energy is given by $E^{2}=p^{2} c^{2}+m^{2} c^{4}$. So, we can no longer use the Schrodinger equation. Suppose that the wave function for the particle $\Psi(x, t)$ is an eigenfunction of the energy operator $\left(i \hbar \frac{d}{d t}|\Psi\rangle=E|\Psi\rangle\right)$ and an eigenfunction of the momentum operator ($-i \hbar \frac{d}{d x}|\Psi\rangle=p|\Psi\rangle$). If there is no potential energy V, derive a linear differential equation for $\Psi(x, t)$.
9. Griffith's Problem 1.15

