
Physics 220 
Homework #2 
Spring 2017 
Due Wednesday, 4/19/17 
 
 
1. Consider reflection from a step potential of height V0  with E >V0  but now with an 

infinitely high wall added at a distance a  from the step as shown below. 
a. What is ψ (x)  in each region? 

The wave functions in each region are given by:  

 

x < 0 : ψ (x) = Aeikx + Be− ikx; k = 2mE
!

0 < x < a :ψ (x) = Ceik 'x + De− ik 'x; k ' =
2m E −V0( )
!

 .  Next we impose boundary 

conditions for the continuity of the wave function and its first derivative at x = 0 .  

We have 
ψ@x = 0 : A + B = C + D
ψ '@x = 0 : ik(A − B) = ik '(C − D)

.  Next we have one more boundary 

condition that the wave function must vanish at x = a .  We have 
ψ = 0@x = a : Ceik 'a + De− ik 'a = 0 .  We have three equations in four unknown 
coefficients so we can express the wave functions in terms of a single unknown 

amplitude A  .  Doing this we find:  

A = C
2
1+ k '

k
− e2ik 'a + k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥

B = C
2
1− k '

k
− e2ik 'a − k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥

D = −Ce2ik 'a

 .  Finishing 

the wave equation we have:  

x < 0 :ψ (x) = C
2
1+ k '

k
− e2ik 'a + k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥
eikx + C

2
1− k '

k
− e2ik 'a − k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥
e− ikx

0 < x < a : ψ (x) = Ceik 'x −Ce2ik 'ae− ik 'x  
 

b. Show that the reflection coefficient at x = 0  is R = 1 .  This is different than the 
previously derived reflection coefficient without the infinite wall?  What is the 
physical reason that R = 1 in this case? 

 

R = B
A

⎛
⎝⎜

⎞
⎠⎟
* B
A
=

C
2
1− k '

k
− e−2ik 'a − k '

k
e−2ik 'a⎡

⎣⎢
⎤
⎦⎥

C
2
1+ k '

k
− e−2ik 'a + k '

k
e−2ik 'a⎡

⎣⎢
⎤
⎦⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

C
2
1− k '

k
− e2ik 'a − k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥

C
2
1+ k '

k
− e2ik 'a + k '

k
e2ik 'a⎡

⎣⎢
⎤
⎦⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 1   

After some easy algebra.  The reason why the reflection coefficient has to be 
identically unity is that what ever may pass the barrier will be reflected back from 
the infinite wall; so all incident particles will be reflected.   

 



 
c. Which part of the wave function represents a left moving particle at x ≤ 0 ?  Show 

that this part of the wave function is an eigenfunction of the momentum operator 
and calculate the eigenvalue.  Is the total wave function for x ≤ 0  an 
eigenfunction of the momentum operator? 

 
 
 
 
 
 
 
 
 
 
 
 

  
The part of the wave function that represents the left moving particle for x ≤ 0 is 
given by Be− ikx .   To see if this is an eigenfunction of the momentum operator and 
determine the eigenvalue, we apply the momentum operator.  We have 

 
−i! ∂

∂x
Be− ikx( ) = −i! −ik( )Be− ikx = −!kBe− ikx  therefore the eigenvalue of the 

momentum operator is  −!k . 
 
 
2. Griffith’s 2.35 

a. Let’s write the wave functions in each region.  We have: 

 

ψ x( ) =
Aeikx + Be− ikx (x < 0) k = 2mE

!

Feik 'x (x < 0) k ' =
2m E +V0( )
!

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Continuity of ψ : A + B = F

Continuity of dψ
dx

: ik A − B( ) = ik 'F
  

Next we solve eliminate the coefficient F  between the two expressions and solve 
for the reflection coefficient:   
 

V(x)	

x	
x	=	a	x	=	0	

V	=	0	

V	=	V0	

E	



A + B = k
k '

A − B( )→ B
A
= −

1− k
k '

1+ k
k '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

R = B
A

⎛
⎝⎜

⎞
⎠⎟
* B
A
=
1− k

k '
1+ k

k '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2

= k '− k
k '+ k

⎛
⎝⎜

⎞
⎠⎟
2

=
E +V0 − E
E +V0 + E

⎛

⎝⎜
⎞

⎠⎟

2

=
1+ V0

E
−1

1+ V0
E

+1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2

R = 1+ 3 −1
1+ 3 +1

⎛
⎝⎜

⎞
⎠⎟

2

= 1
3

⎛
⎝⎜

⎞
⎠⎟
2

= 1
9   

 
b.  The cliff is two-dimensional, and even if we pretend the car drops straight down, 

the potential as a function of distance along the (crooked, but now one-
dimensional) path is −mgx  (with x  being the vertical coordinate), as shown. 

 
 
 

 
 
 

 
 
 
 

c.   In order to determine the reflection and transmission coefficients we need the 

ratio of 
V0
E

= 12MeV
4MeV

= 3
.  Therefore the probability of being reflected is R = 1

9  
and transmitted is R = 8

9 . 
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x 

-V0 



3. Griffith’s 2.52 
b.  For the finite barrier we have from equations 2.167 and 2.168:   
 

Eq. 2.167 : B = i sin 2k 'a( )
2kk '

k '2− k2( )F

Eq. 2.168 : F = e−2ika

cos(2k 'a)−
i k '2+ k2( )
2kk '

sin(2k 'a)
A

B
F

⎛
⎝⎜

⎞
⎠⎟
=

S11 S12
S21 S22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A
G

⎛
⎝⎜

⎞
⎠⎟

S = e−2ika

cos(2k 'a)−
i k '2+ k2( )
2kk '

sin(2k 'a)

i sin 2k 'a( )
2kk '

k '2− k2( ) 1

1 i sin 2k 'a( )
2kk '

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

A
G

⎛
⎝⎜

⎞
⎠⎟

 
 

4. Griffith’s 2.53 
 

a. Writing the matrix given in the problem out, we have 

 
F = M11A +M12B (1)
G = M 21A +M 22B (2)

  

 
and from the S matrix from the previous problem,  
B = S11A + S12G (3)
F = S21A + S22G (4)

. 

 
Solving (3) for G we and equating this to (2) we have 

G = B
S12

− S11A
S12

= M 21A +M 22B .  Therefore we have M 22 =
1
S12

and 

M 21 = − S11
S12

. 

 
Next, we equate (1) and (4) and substitute the expression for G above and 

thus we have 
F = S21A + S22G = S21A + S22

B
S12

− S11A
S12

⎛
⎝⎜

⎞
⎠⎟
= M11A +M12B

M11A +M12B = S21 − S22
S11
S12

⎛
⎝⎜

⎞
⎠⎟
A + S22

S12

⎛
⎝⎜

⎞
⎠⎟
B

.  

Therefore we have M12 =
S22
S12

and M11 =
S21S12 − S22S11

S12
. 



 
Therefore the transfer matrix looks like:  

M =
M11 M12

M 21 M 22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1
S12

S21S12 − S22S11 S22
−S11 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. 

 
To write the scattering matrix in terms of the transfer matrix, we reverse the 
process.  From equation (4) we solve for B and equate the expression to 

equation (1).  We have B = G
M 22

− M 21

M 22

A = S11A + S12G .  Therefore 

S11 = − M 21

M 22

and S12 =
1
M 22

. 

 
Next we equate equations (2) and (4) for F and use the expression for B in 
terms of G and A .  We get 

S21A + S22G = M11A +M12B = M11A +M12
G
M 22

− M 21

M 22

A
⎛
⎝⎜

⎞
⎠⎟

S21A + S22G = M11M 22 −M 21M12

M 22

⎛
⎝⎜

⎞
⎠⎟
A + M12

M 22

G
. 

Thus we have S21 =
M12

M 22

and S22 =
M11M 22 −M 21M12

M 22

.   

 
We can then write the scattering matrix as 

S =
M11 M12

M 21 M 22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1
S12

S21S12 − S22S11 S22
−S11 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. 

 
So to finish, we can write the reflection and transmission coefficients in terms 
of elements of the scattering and transfer matrices.  The results are 

Rleft =
B
A G=0

= S11
2 = M 21

M 22

2

Rright =
F
G A=0

= S22
2 = M11M 22 −M 21M12

M 22

2

Tleft =
F
A G=0

= S21
2 = M12

M 22

2

Tright =
B
G A=0

= S21
2 = 1

M 22

2

 

 
 



b. From the figure given in the text, we have  
C
D

⎛
⎝⎜

⎞
⎠⎟
= M1

A
B

⎛
⎝⎜

⎞
⎠⎟

and F
G

⎛
⎝⎜

⎞
⎠⎟
= M 2

C
D

⎛
⎝⎜

⎞
⎠⎟

.  Combining the two 

expressions we have F
G

⎛
⎝⎜

⎞
⎠⎟
= M 2

C
D

⎛
⎝⎜

⎞
⎠⎟
= M 2M1

A
B

⎛
⎝⎜

⎞
⎠⎟
= M A

B
⎛
⎝⎜

⎞
⎠⎟

.  Thus 

we have M = M 2M1 , which generalizes to any number of matrices and the 
order matters since we are multiplying matrices. 

 
5. Starting with the expression for the transmission coefficient for the case of  E >V0 , 

show that 
a. in the limit that E ~V0 , the transmission coefficient can be written as 

T ~ 1
1+ a2k2

. 

 
The transmission coefficient is given as 

 
T −1 = 1+ V0

2

4E(E −V0 )
sin2 8ma2

!2
(E −V0 )

⎛

⎝
⎜

⎞

⎠
⎟ .  For the first case, when E >V0  we 

can write the transmission coefficient as approximately 

 

T −1 ≈1+ V0
4E( E

V0
−1)

sin2 8ma2V0
!2

( E
V0

−1)
⎛

⎝
⎜

⎞

⎠
⎟ ≈1+

V0
2

4E2 sin
2 8ma2E

!2
⎛

⎝
⎜

⎞

⎠
⎟ .  For 

finite energies, expand the sine term in a power series and keep the lowest term.  

We have sinθ = θ + θ
3

3!
+ ...≈θ and thus 

 
sin2 8ma2E

!2
⎛

⎝
⎜

⎞

⎠
⎟ ~

8ma2E
!2

.  Therefore the 

transmission coefficient becomes 

 
T −1 ≈1+ V0

2

4E2 sin
2 8ma2E

!2
⎛

⎝
⎜

⎞

⎠
⎟ ≈1+

V0
2

4E2
8ma2E
!2

⎛
⎝⎜

⎞
⎠⎟
≈1+ k2a2( )V0

2

E2 ≈1+ k2a2( )  

for E ~V0 .  And therefore we have T ~ 1
1+ k2a2( ) . 

 
b. in the limit that E <V0 , the transmission coefficient can be written as 

 

T = 1

1+ V0
2

4E(V0 − E)
sinh2 8ma2

!2
(V0 − E)

⎛

⎝
⎜

⎞

⎠
⎟

.  Hint, you will need to use the fact 

that sinh(x) = −isin(ix) . 
 

Starting again with the transmission coefficient for E >V0we can write the 
transmission coefficient in the limit that E <V0 as 



 

T −1 = 1+ V0
2

4E2 (1− V0
E
)
sin2 8ma2E

!2
(1− V0

E
)

⎛

⎝
⎜

⎞

⎠
⎟ = 1+

V0
2

4E2 (1− V0
E
)
sin2 − 8ma

2E
!2

(V0
E

−1)
⎛

⎝
⎜

⎞

⎠
⎟

 
Now, we can write the sine term as 

 
sin − 8ma

2E
!2

(V0
E

−1)
⎛

⎝
⎜

⎞

⎠
⎟ = sin i 8ma2E

!2
(V0
E

−1)
⎛

⎝
⎜

⎞

⎠
⎟ =

sinh 8ma2E
!2

(V0
E

−1)
⎛

⎝
⎜

⎞

⎠
⎟

−i
 

 
using the definition that sinh(x) = −isin(x) .  Now square the sine (and hyperbolic 

sine terms) and we get sin2 θ( ) = sinh θ( )
−i

⎛
⎝⎜

⎞
⎠⎟
sinh θ( )

i
⎛
⎝⎜

⎞
⎠⎟
= sinh2 θ( ) .  Therefore we 

can write the transmission coefficient for E <V0 as 

 

T −1 = 1+ V0
2

4E2 (1− V0
E
)
sinh2 8ma2

!2
(V0 − E)

⎛

⎝
⎜

⎞

⎠
⎟ . 

 
 

6. Suppose that you have a potential barrier of height V0 = 40eV and that a beam of 
electrons is incident on the barrier.  At what incident energies greater than the barrier 
height will there be no reflected particles?  That is, at what incident energies grater 
than the barrier height will T = 1?  Assume that the barrier has a width of 
a = 2.3×10−10m  and determine the first 5 energies. 

 
The transmission coefficient for a barrier of with 2a , is given as 

 

T = 1

1+ V0
2

4E(E −V0 )
sin2 8ma2

!2
(E −V0 )

⎛

⎝
⎜

⎞

⎠
⎟

and the transmission coefficient is 

unity when the argument of the sine squared term vanishes.  Thus we have, 

 

sin2 8ma2

!2
(E −V0 )

⎛

⎝
⎜

⎞

⎠
⎟ = 0→

8ma2

!2
(E −V0 ) = nπ

En = n
2 π 2!2

8ma2
⎛
⎝⎜

⎞
⎠⎟
+V0

. 

For the data given in the problem, we find the first five energies are given as 
En = 41.8,47.1,56.0,68.5,84.5{ }eV .  This can be seen also from the 
Mathematical plot below. 



  
 

7.   Fusion reactions are important in solar energy production and this process involves 
the capture of a proton by a carbon nucleus of radius about2 ×10−15m . 
a.   What is the Coulomb potential experienced by the proton if it is at the nuclear 

surface of carbon?  Express your answer in MeV . 
 

 V =
QCQp

4πε0r
=

6 × 1.6 ×10−19C( )2
4π 8.82 ×10−12 C2

Nm2( ) 2 ×10−15m( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× 1MeV
1.6 ×10−13J

= 4.32MeV
 

 
b. The proton is incident upon the nucleus because of its thermal motion, which is 

given approximately as E ~10kT , where the temperature in the interior of the sun 
is about T ~1×107K .  How does this energy compare to the height of the 
Coulomb barrier? 

	
	 E = 10kT = 10 × 8.617 ×10−5 eV

K ×1×107K = 8600eV = 8.6keV  
	
c. Calculate the probability that the proton can penetrate a rectangular barrier 

potential of height V extending from r to 2r , the point at which the Coulomb 

barrier potential drops to V
2

.  Hint:  When we derived the transmission coefficient 

our barrier had a width of 2a .  In this problem the width is only a .  You need to 
change the transmission coefficient appropriately to take this into account.  You 
do not need to redo the analysis of the finite barrier if you’re cleaver and think 
about it.  
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T = 1

1+ V0
2

4E(V0 − E)
sinh2 2ma2

!2
(V0 − E)

⎛

⎝
⎜

⎞

⎠
⎟

T = 1

1+ 4.32MeV( )2
4 0.00866MeV( )(4.32MeV ) sinh

2 0.91( )
= 0.0076 = 0.76%

	

 
where, sinh2 0.91( )was evaluated using Mathematica.  Further, 

 

2ma2

!2
(V0 − E)

=
2(1.67 ×10−27 kg) 2 ×10−15m( )2 × 4.32MeV

6.63×10−34 Js
2π( )2

× 1.6 ×10
−13J

1MeV
= 0.91

. 

 
 


