
Physics 220 
Homework #4 
Spring 2017 
Due Wednesday, 5/3/17 
 
1. Griffith’s 2.12 

a. The expectation value of the position is calculated from x = ψ n xψ n , where 

 
x = !

2mω
a+ + a−( ) .  In addition we need to operate on the wave function with 

the raising and lowering operators.  From Griffith’s page 48, equation 2.66, we 
have a+ψ n = n +1ψ n+1and a−ψ n = nψ n−1 .  Using these we compute the 
expectation value of the position. 

Thus 
 
xψ n =

!
2mω

a+ψ n + a−ψ n( ) = !
2mω

n +1ψ n+1 + nψ n−1( ) and 

 
x = ψ n xψ n = !

2mω
n +1 ψ n

*ψ n+1 dx + n ψ n
*ψ n−1 dx∫∫⎡

⎣
⎤
⎦ = 0 since the states 

ψ n and ψ n+1 , and ψ n andψ n−1  are orthogonal and thus the integral is zero. 
b. The expectation value of the momentum is calculated from p = ψ n pψ n , 

where 
 
p = i mω!

2
a+ − a−( ) .  The expectation value of the momentum is thus 

 
pψ n = i

mω!
2

a+ψ n − a−ψ n( ) = i mω!
2

n +1ψ n+1 − nψ n−1( ) and 

 
p = ψ n pψ n = i mω!

2
n +1 ψ n

*ψ n+1 dx − n ψ n
*ψ n−1 dx∫∫⎡

⎣
⎤
⎦ = 0 . 

c. The expectation value of the position squared is calculated from x2 = ψ n x
2ψ n

, where 
 
x2 = !

2mω
a+ + a−( ) a+ + a−( ) = !

2mω
a+a+ + a+a− + a−a+ + a−a−( ) .  The 

expectation value of the position squared is thus 

 

x2ψ n =
!

2mω
a+a+ψ n + a+a−ψ n + a−a+ψ n + a−a−ψ n( )

x2ψ n =
!

2mω
n +1a+ψ n+1 + na+ψ n−1 + n +1a−ψ n+1 + na−ψ n−1( )

x2ψ n =
!

2mω
n +1 n + 2ψ n+2 + n nψ n + n +1 n +1ψ n + n n −1ψ n−2( )

 



and 

 

x2 = ψ n x
2ψ n

x2 = !
2mω

n +1 n + 2 ψ n
*ψ n+2 dx + n ψ n

*ψ n dx∫ + (n +1) ψ n
*ψ n dx∫ + n n −1 ψ n

*ψ n−2 dx∫∫⎡
⎣

⎤
⎦

x2 = !
2mω

[0 + n + (n +1)+ 0]= (2n +1) !
2mω

 
d.  The expectation value of the momentum squared is calculated from

p2 = ψ n p
2ψ n , where 

 
p2 = − mω!

2
a+ − a−( ) a+ − a−( ) = − mω!

2
a+a+ − a+a− − a−a+ + a−a−( ) .  The 

expectation value of the momentum squared is thus 

 

p2ψ n = − mω!
2

a+a+ψ n − a+a−ψ n − a−a+ψ n + a−a−ψ n( )

p2ψ n = − mω!
2

n +1a+ψ n+1 − na+ψ n−1 − n +1a−ψ n+1 + na−ψ n−1( )
p2ψ n = − mω!

2
n +1 n + 2ψ n+2 − n nψ n − n +1 n +1ψ n + n n −1ψ n−2( )

 

and 

 

p2 = ψ n p
2ψ n

p2 = − mω!
2

n +1 n + 2 ψ n
*ψ n+2 dx − n ψ n

*ψ n dx∫ − (n +1) ψ n
*ψ n dx∫ + n n −1 ψ n

*ψ n−2 dx∫∫⎡
⎣

⎤
⎦

p2 = mω!
2
[0 + n + (n +1)+ 0]= (2n +1)mω!

2
 

e. The problem also asks to calculate the expectation value of the kinetic energy.  
I’m also going to calculate a few other things.  In particular the expectation value 
of the potential energy and the expectation value of the Hamiltonian. 

 

 
T =

p2

2m
= 2n +1( )mω!

4m
= 2n +1( ) !ω

4
. 

 
V = mω

2

2
x2 = 2n +1( )mω

2!
4mω

= 2n +1( ) !ω
4

. 

 
H = T + V = 2n +1( ) !ω

4
+ !ω
4

⎡
⎣⎢

⎤
⎦⎥
= 2n +1( ) !ω

2
= n + 1

2
⎛
⎝⎜

⎞
⎠⎟ !ω  as expected! 

 
 
 
 
 
 



2. Griffith’s 2.15 

The ground state wave function is 
 
ψ 0 =

mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
4

e
−mω
2!

x2

and the classically allowed 

region is given by E0 = 1
2 mω

2x0
2 → x0 =

2E0
mω 2 .  To calculate the probability we use 

 
P = 2 ψ 0

*ψ 0 dx
x0

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ψ 0 = 2

mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
2

e
−mω
!
x2

dx
x0

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, where the factor of two is from 

integrating from x0 to infinity and from minus infinity to x0 outside of the classically 
allowed region.  Evaluating the integral on Mathematica (or looking it up in a table of 

integrals) we find:  
 
P = 2 mω

π!
⎛
⎝⎜

⎞
⎠⎟

1
2 1
2

mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
2

− 1
2

π!ωE0
mω 2E0

Erf [ 2E0
!ω

]
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1− Erf [1][ ]

using the fact that the ground state energy is 
 
E0 =

!ω
2

.  Evaluating the error function 

on Mathematica we find that the probability is given as 
P = 1− Erf [1]= 1− 0.843= 0.157 , or a 15.7%chance of being found outside of the 
classically forbidden region!  The Mathematica code is given below. 

 
 
 
 
 
 
 
 
 
 
 
3. Prove that  Ĥ â− ψ n( ) = En − !ω( )ψ n−1 . 

Starting with  Ĥâ− ψ n = !ω â−â+ − 1
2( ) â− ψ n .  Multiply through by the lowering 

operator on the right and we have  !ω â−â+â− − 1
2 â−( )ψ n .  Factor out the lowering 

operator on the left and replace â+â− with â−â+ −1 .  We have 

 !ω â− â+â− − 1
2( )ψ n = !ω â− â−â+ −1− 1

2( )ψ n .  Then we note that  Ĥ = â−â+ − 1
2( )!ω , 

so we can write 
 
!ω â−

Ĥ
!ω

−1
⎛
⎝⎜

⎞
⎠⎟
ψ n = â− Ĥ ψ n − !ω ψ n( ) = En − !ω( ) â− ψ n .  

Therefore,  Ĥ â− ψ n( ) = En − !ω( ) â− ψ n = En − !ω( )ψ n−1 . 
 
 
 



4. Starting from ψ 0 , use the raising operator to determine ψ 2 .  Don’t forget to 
normalize your solution.  Then, using the analytic solution to the harmonic oscillator

 
ψ n = mω

π!
⎛
⎝⎜

⎞
⎠⎟

1
4 1
2n n!

e
−mω
2!

x2

Hn
mω
!
x

⎛
⎝⎜

⎞
⎠⎟

show that your solution using the raising 

operator for ψ 2  agrees with the analytic solution.   
 

Using the general analytic solution to the harmonic oscillator we can form ψ 2 .  
Thus we have: 

 
ψ 2 = mω

π!
⎛
⎝⎜

⎞
⎠⎟

1
4 1
222!

e
−mω
2!

x2

H2
mω
!
x

⎛
⎝⎜

⎞
⎠⎟
= 1

8
mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
4

e
−mω
2!

x2

H2
mω
!
x

⎛
⎝⎜

⎞
⎠⎟ 	

and we need to evaluate the Hermite polynomial of order 2. 

 
H2

mω
!
x

⎛
⎝⎜

⎞
⎠⎟
= an

mω
!
x

⎛
⎝⎜

⎞
⎠⎟n

∑
n

= a0 + a2
mω
!
x

⎛
⎝⎜

⎞
⎠⎟

2

 
where the coefficient a2 is determined from the recursion relation. 

an+2 =
2n − λ

n + 2( ) n +1( )
⎡

⎣
⎢

⎤

⎦
⎥an → a2 = − λ

2
a0

 

Thus 
 
H2

mω
!
x

⎛
⎝⎜

⎞
⎠⎟
= a0 −

λ
2
a0

mω
!
x

⎛
⎝⎜

⎞
⎠⎟

2

.  The unknown coefficient a0 is determined 

by setting the coefficient in front of the highest power of x2 equal to 22 = 4 .  We 

have  − λ
2
a0 = 4→ a0 = − 8

λ
= − 8

4
= −2 , where 

 
λ = 2E2
!ω

−1= 2
5
2 !ω( )
!ω

−1= 4 .  

 
λ = 2E2
!ω

−1= 2
5
2 !ω( )
!ω

−1= 4 .  Evaluating the Hermite polynomial we have 

 
H2

mω
!
x

⎛
⎝⎜

⎞
⎠⎟
= −2 + 4 mω

!
x2 = 4 mω

!
x2 − 2⎛

⎝⎜
⎞
⎠⎟ .  This could also be evaluated on 

Mathematica.  The code is below. 

 
 
So the analytic solution is 

 
ψ 2 = 1

8
4mω
!

x2 − 2⎛
⎝⎜

⎞
⎠⎟
mω
π!

⎛
⎝⎜

⎞
⎠⎟

1
4

e
−mω
2!

x2

= 1
2
2mω
!

x2 −1⎛
⎝⎜

⎞
⎠⎟ ψ 0  



Using the raising operator, 
 
a+ =

1
2m!ω

−ip +mω x( )we will raise 

 
ψ 0 = mω

π!
⎛
⎝⎜

⎞
⎠⎟

1
4

e
−mω
2!

x2

to ψ 1 and then ψ 1 to ψ 2 .  In the momentum operator we 

need to evaluate d
dx

ψ 0 , which is 
 

d
dx

ψ 0 = − mω
!

x ψ 0 . Applying the raising 

operator 
 
ψ 1 = 1

2m!ω
mω x +mω x( )ψ 0 = 2mω

!
x ψ 0 .  Now we raise ψ 1 to 

ψ 2 = a+A2 ψ 1 .  Evaluating the derivative in the momentum operator 

 

d
dx

ψ 1 = 2mω
!

d
dx

x ψ 0( ) = 2mω
!

ψ 0 + x d
dx

ψ 0
⎛
⎝⎜

⎞
⎠⎟ =

2mω
!

1− mω
!

x2⎛
⎝⎜

⎞
⎠⎟ ψ 0 .  

Now applying the raising operator 

 

ψ 2 = A2
2m!ω

−! 2mω
!

1− mω
!

x2⎛
⎝⎜

⎞
⎠⎟ ψ 0 + 2mω

!
mω x2 ψ 0

⎡

⎣
⎢

⎤

⎦
⎥

ψ 2 = A2!
2m!ω

2mω
!

2mω
!

x2 −1⎛
⎝⎜

⎞
⎠⎟ ψ 0

ψ 2 = A2
2mω
!

x2 −1⎛
⎝⎜

⎞
⎠⎟ ψ 0

 

Now we need to normalize the solution to determine A2 .  Normalizing we find that 

 
P = 1= ψ 2 ψ 2 = A2

2 mω
!π

⎛
⎝⎜

⎞
⎠⎟

1
2 2mω

!
x2 −1⎛

⎝⎜
⎞
⎠⎟
2

e
−mω
!
x2

dx
−∞

∞

∫ = 2A2
2 → A2 =

1
2

.  This 

integral was done on Mathematica.  The code is below.  Thus the normalized wave 

function is 
 
ψ 2 = 1

2
2mω
!

x2 −1⎛
⎝⎜

⎞
⎠⎟ ψ 0 , which agrees with the analytic solution. 

 
5. Consider a charged particle of mass m and charge q  in a one-dimensional harmonic 

oscillator potential.  Suppose that an electric field Ε is turned on so that the potential 

energy is given by V = mω
2

2
x2 − qΕx .  What are the energies of the states?  Hint:  

The problem is easier with a change of variables and thus let y = x − qΕ
mω 2 .  

We start with the SWE and use the hint.  The SWE is for the harmonic oscillator in 
the presence of zero electric field is: 



 

− !
2

2m
d 2ψ n

dx2
+Vψ n = Enψ n

− !
2

2m
d 2ψ n

dx2
+ mω

2

2
x2ψ n = Enψ n

 

where the energies are given as 
 
En = n + 1

2
⎛
⎝⎜

⎞
⎠⎟ !ω .   

In the presence of the electric field, the SWE is  

 

− !
2

2m
d 2ψ n

dx2
+Vψ n = En

'ψ n

− !
2

2m
d 2ψ n

dx2
+ mω

2

2
x2ψ n − qΕxψ n = En

'ψ n

 

Using the hint, we can write that y = x − qΕ
mω 2 → dy = dx , and x = y + qΕ

mω 2 so that the 

SWE becomes 
 

 

− !
2

2m
d 2ψ n

dx2
+Vψ n = En

'ψ n

− !
2

2m
d 2ψ n

dx2
+ mω 2

2
x2 − qΕx

⎛
⎝⎜

⎞
⎠⎟
ψ n = − !

2

2m
d 2ψ n

dx2
+ mω

2

2
x x − qΕ

mω 2 −
qΕ
mω 2

⎛
⎝⎜

⎞
⎠⎟ψ n = En

'ψ n

− !
2

2m
d 2ψ n

dy2
+ mω

2

2
y + qΕ

mω 2
⎛
⎝⎜

⎞
⎠⎟ y − qΕ

mω 2
⎛
⎝⎜

⎞
⎠⎟ψ n = En

'ψ n

− !
2

2m
d 2ψ n

dy2
+ mω

2

2
y2ψ n −

q2Ε2

2mω 2ψ n = En
'ψ n

∴− !
2

2m
d 2ψ n

dy2
+ mω

2

2
y2ψ n = En

' + q2Ε2

2mω 2

⎛
⎝⎜

⎞
⎠⎟
ψ n

 

This form of the SWE for the harmonic oscillator looks exactly like the original form 
and therefore we have 

 

En = En
' + q2Ε2

2mω 2

n + 1
2

⎛
⎝⎜

⎞
⎠⎟ !ω = En

' + q2Ε2

2mω 2

∴En
' = n + 1

2
⎛
⎝⎜

⎞
⎠⎟ !ω − q2Ε2

2mω 2

 

and the energies of the states are those of the original harmonic oscillator lowered by 

a constant q
2Ε2

2mω 2 . 

 
 
 



6. Griffith’s 3.10 
The ground state wave function of the infinite square well is given as 

ψ 1 =
2
a
sin π

a
x⎛

⎝⎜
⎞
⎠⎟ .  Apply the momentum operator and we have 

 
p̂ψ 1 = −i! d

dx
2
a
sin π

a
x⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
= −i! 2

a
π
a

⎛
⎝⎜

⎞
⎠⎟ cos

π
a
x⎛

⎝⎜
⎞
⎠⎟ .  Therefore since we do not get 

the wave function back multiplied by a constant, the ground state wave function of 
the infinite square well is not an eigenstate of the momentum operator. 

 
7. Griffith’s 3.13 

a.   
[AB,C]= ABC −CAB = ABC −CAB + (ACB − ACB)
[AB,C]= A[B,C]− [C,A]B = A[B,C]+ [A,C]B

 

b. 

 

[xn , p]⇒ [xn , p] f = −i!xn df
dx

− (−i! d
dx
(xn f )) = −i!xn df

dx
+ i! nxn−1 f + xn df

dx
⎛
⎝⎜

⎞
⎠⎟

[xn , p] f = i!nxn−1 f → [xn , p]= i!nxn−1
. 

c.  

 

[ f , p]⇒ [ f , p]q = fpq − pfq = −i!f dq
dx

− (−i! d
dx
( fq))

= −i!f dq
dx

+ i!(df
dx
q + f dq

dx
)

[ f , p]q = i! df
dx
q→ [ f , p]= i! df

dx

 

 
 
 


