Physics 220
Homework \#4
Spring 2017
Due Wednesday, 5/3/17

1. Griffith's 2.12
a. The expectation value of the position is calculated from $\langle x\rangle=\left\langle\psi_{n} \mid x \psi_{n}\right\rangle$, where $x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a_{+}+a_{-}\right)$. In addition we need to operate on the wave function with the raising and lowering operators. From Griffith's page 48, equation 2.66, we have $a_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}$ and $a_{-} \psi_{n}=\sqrt{n} \psi_{n-1}$. Using these we compute the expectation value of the position.
Thus $x \psi_{n}=\sqrt{\frac{\hbar}{2 m \omega}}\left(a_{+} \psi_{n}+a_{-} \psi_{n}\right)=\sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n+1} \psi_{n+1}+\sqrt{n} \psi_{n-1}\right)$ and
$\langle x\rangle=\left\langle\psi_{n} \mid x \psi_{n}\right\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left[\sqrt{n+1} \int \psi_{n}^{*} \psi_{n+1} d x+\sqrt{n} \int \psi_{n}^{*} \psi_{n-1} d x\right]=0$ since the states ψ_{n} and ψ_{n+1}, and ψ_{n} and ψ_{n-1} are orthogonal and thus the integral is zero.
b. The expectation value of the momentum is calculated from $\langle p\rangle=\left\langle\psi_{n} \mid p \psi_{n}\right\rangle$, where $p=i \sqrt{\frac{m \omega \hbar}{2}}\left(a_{+}-a_{-}\right)$. The expectation value of the momentum is thus $p \psi_{n}=i \sqrt{\frac{m \omega \hbar}{2}}\left(a_{+} \psi_{n}-a_{-} \psi_{n}\right)=i \sqrt{\frac{m \omega \hbar}{2}}\left(\sqrt{n+1} \psi_{n+1}-\sqrt{n} \psi_{n-1}\right)$ and $\langle p\rangle=\left\langle\psi_{n} \mid p \psi_{n}\right\rangle=i \sqrt{\frac{m \omega \hbar}{2}}\left[\sqrt{n+1} \int \psi_{n}^{*} \psi_{n+1} d x-\sqrt{n} \int \psi_{n}^{*} \psi_{n-1} d x\right]=0$.
c. The expectation value of the position squared is calculated from $\left\langle x^{2}\right\rangle=\left\langle\psi_{n} \mid x^{2} \psi_{n}\right\rangle$
, where $x^{2}=\frac{\hbar}{2 m \omega}\left(a_{+}+a_{-}\right)\left(a_{+}+a_{-}\right)=\frac{\hbar}{2 m \omega}\left(a_{+} a_{+}+a_{+} a_{-}+a_{-} a_{+}+a_{-} a_{-}\right)$. The expectation value of the position squared is thus

$$
\begin{aligned}
& x^{2} \psi_{n}=\frac{\hbar}{2 m \omega}\left(a_{+} a_{+} \psi_{n}+a_{+} a_{-} \psi_{n}+a_{-} a_{+} \psi_{n}+a_{-} a_{-} \psi_{n}\right) \\
& x^{2} \psi_{n}=\frac{\hbar}{2 m \omega}\left(\sqrt{n+1} a_{+} \psi_{n+1}+\sqrt{n} a_{+} \psi_{n-1}+\sqrt{n+1} a_{-} \psi_{n+1}+\sqrt{n} a_{-} \psi_{n-1}\right) \\
& x^{2} \psi_{n}=\frac{\hbar}{2 m \omega}\left(\sqrt{n+1} \sqrt{n+2} \psi_{n+2}+\sqrt{n} \sqrt{n} \psi_{n}+\sqrt{n+1} \sqrt{n+1} \psi_{n}+\sqrt{n} \sqrt{n-1} \psi_{n-2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle x^{2}\right\rangle=\left\langle\psi_{n} \mid x^{2} \psi_{n}\right\rangle \\
& \left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}\left[\sqrt{n+1} \sqrt{n+2} \int \psi_{n}^{*} \psi_{n+2} d x+n \int \psi_{n}^{*} \psi_{n} d x+(n+1) \int \psi_{n}^{*} \psi_{n} d x+\sqrt{n} \sqrt{n-1} \int \psi_{n}^{*} \psi_{n-2} d x\right] \\
& \left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}[0+n+(n+1)+0]=(2 n+1) \frac{\hbar}{2 m \omega}
\end{aligned}
$$

d. The expectation value of the momentum squared is calculated from
$\left\langle p^{2}\right\rangle=\left\langle\psi_{n} \mid p^{2} \psi_{n}\right\rangle$, where
$p^{2}=-\frac{m \omega \hbar}{2}\left(a_{+}-a_{-}\right)\left(a_{+}-a_{-}\right)=-\frac{m \omega \hbar}{2}\left(a_{+} a_{+}-a_{+} a_{-}-a_{-} a_{+}+a_{-} a_{-}\right)$. The
expectation value of the momentum squared is thus

$$
\begin{aligned}
& p^{2} \psi_{n}=-\frac{m \omega \hbar}{2}\left(a_{+} a_{+} \psi_{n}-a_{+} a_{-} \psi_{n}-a_{-} a_{+} \psi_{n}+a_{-} a_{-} \psi_{n}\right) \\
& p^{2} \psi_{n}=-\frac{m \omega \hbar}{2}\left(\sqrt{n+1} a_{+} \psi_{n+1}-\sqrt{n} a_{+} \psi_{n-1}-\sqrt{n+1} a_{-} \psi_{n+1}+\sqrt{n} a_{-} \psi_{n-1}\right) \\
& p^{2} \psi_{n}=-\frac{m \omega \hbar}{2}\left(\sqrt{n+1} \sqrt{n+2} \psi_{n+2}-\sqrt{n} \sqrt{n} \psi_{n}-\sqrt{n+1} \sqrt{n+1} \psi_{n}+\sqrt{n} \sqrt{n-1} \psi_{n-2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle p^{2}\right\rangle=\left\langle\psi_{n} \mid p^{2} \psi_{n}\right\rangle \\
& \left\langle p^{2}\right\rangle=-\frac{m \omega \hbar}{2}\left[\sqrt{n+1} \sqrt{n+2} \int \psi_{n}^{*} \psi_{n+2} d x-n \int \psi_{n}^{*} \psi_{n} d x-(n+1) \int \psi_{n}^{*} \psi_{n} d x+\sqrt{n} \sqrt{n-1} \int \psi_{n}^{*} \psi_{n-2} d x\right] \\
& \left\langle p^{2}\right\rangle=\frac{m \omega \hbar}{2}[0+n+(n+1)+0]=(2 n+1) \frac{m \omega \hbar}{2}
\end{aligned}
$$

e. The problem also asks to calculate the expectation value of the kinetic energy.

I'm also going to calculate a few other things. In particular the expectation value of the potential energy and the expectation value of the Hamiltonian.

$$
\begin{aligned}
& \langle T\rangle=\frac{\left\langle p^{2}\right\rangle}{2 m}=(2 n+1) \frac{m \omega \hbar}{4 m}=(2 n+1) \frac{\hbar \omega}{4} . \\
& \langle V\rangle=\frac{m \omega^{2}}{2}\left\langle x^{2}\right\rangle=(2 n+1) \frac{m \omega^{2} \hbar}{4 m \omega}=(2 n+1) \frac{\hbar \omega}{4} . \\
& \langle H\rangle=\langle T\rangle+\langle V\rangle=(2 n+1)\left[\frac{\hbar \omega}{4}+\frac{\hbar \omega}{4}\right]=(2 n+1) \frac{\hbar \omega}{2}=\left(n+\frac{1}{2}\right) \hbar \omega \text { as expected! }
\end{aligned}
$$

2. Griffith's 2.15

The ground state wave function is $\psi_{0}=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} e^{-\frac{m \omega}{2 \hbar} x^{2}}$ and the classically allowed region is given by $E_{0}=\frac{1}{2} m \omega^{2} x_{0}^{2} \rightarrow x_{0}=\sqrt{\frac{2 E_{0}}{m \omega^{2}}}$. To calculate the probability we use $P=2\left[\int_{x_{0}}^{\infty} \psi_{0}^{*} \psi_{0} d x\right] \psi_{0}=2\left[\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{2} \infty} \int_{x_{0}}^{\infty} e^{-\frac{m \omega}{\hbar} x^{2}} d x\right]$, where the factor of two is from
integrating from x_{0} to infinity and from minus infinity to x_{0} outside of the classically allowed region. Evaluating the integral on Mathematica (or looking it up in a table of
integrals) we find: $P=2\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{2}}\left[\frac{1}{2}\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{2}}-\frac{1}{2} \sqrt{\frac{\pi \hbar \omega E_{0}}{\pi \omega^{2} E_{0}}} \operatorname{Erf}\left[\sqrt{\frac{2 E_{0}}{\hbar \omega}}\right]=[1-\operatorname{Erf}[1]]\right.$
using the fact that the ground state energy is $E_{0}=\frac{\text {. Evaluating the error function }}{2}$. on Mathematica we find that the probability is given as $P=1-\operatorname{Erf}[1]=1-0.843=0.157$, or a 15.7% chance of being found outside of the classically forbidden region! The Mathematica code is given below.

3. Prove that $\hat{H}\left(\hat{a}_{-}\left|\psi_{n}\right\rangle\right)=\left(E_{n}-\hbar \omega\right)\left|\psi_{n-1}\right\rangle$.

Starting with $\hat{H} \hat{a}_{-}\left|\psi_{n}\right\rangle=\hbar \omega\left(\hat{a}_{-} \hat{a}_{+}-\frac{1}{2}\right) \hat{a}_{-}\left|\psi_{n}\right\rangle$. Multiply through by the lowering operator on the right and we have $\hbar \omega\left(\hat{a}_{-} \hat{a}_{+} \hat{a}_{-}-\frac{1}{2} \hat{a}_{-}\right)\left|\psi_{n}\right\rangle$. Factor out the lowering operator on the left and replace $\hat{a}_{+} \hat{a}_{-}$with $\hat{a}_{-} \hat{a}_{+}-1$. We have $\hbar \omega \hat{a}_{-}\left(\hat{a}_{+} \hat{a}_{-}-\frac{1}{2}\right)\left|\psi_{n}\right\rangle=\hbar \omega \hat{a}_{-}\left(\hat{a}_{-} \hat{a}_{+}-1-\frac{1}{2}\right)\left|\psi_{n}\right\rangle$. Then we note that $\hat{H}=\left(\hat{a}_{-} \hat{a}_{+}-\frac{1}{2}\right) \hbar \omega$, so we can write $\hbar \omega \hat{a}_{-}\left(\frac{\hat{H}}{\hbar \omega}-1\right)\left|\psi_{n}\right\rangle=\hat{a}_{-}\left(\hat{H}\left|\psi_{n}\right\rangle-\hbar \omega\left|\psi_{n}\right\rangle\right)=\left(E_{n}-\hbar \omega\right) \hat{a}_{-}\left|\psi_{n}\right\rangle$. Therefore, $\hat{H}\left(\hat{a}_{-}\left|\psi_{n}\right\rangle\right)=\left(E_{n}-\hbar \omega\right) \hat{a}_{-}\left|\psi_{n}\right\rangle=\left(E_{n}-\hbar \omega\right)\left|\psi_{n-1}\right\rangle$.
4. Starting from $\left|\psi_{0}\right\rangle$, use the raising operator to determine $\left|\psi_{2}\right\rangle$. Don't forget to normalize your solution. Then, using the analytic solution to the harmonic oscillator $\left|\psi_{n}\right\rangle=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^{n} n!}} e^{-\frac{m \omega}{2 \hbar} x^{2}} H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)$ show that your solution using the raising operator for $\left|\psi_{2}\right\rangle$ agrees with the analytic solution.

Using the general analytic solution to the harmonic oscillator we can form $\left|\psi_{2}\right\rangle$.
Thus we have:

$$
\left|\psi_{2}\right\rangle=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^{2} 2!}} e^{-\frac{m \omega}{2 \hbar} x^{2}} H_{2}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)=\frac{1}{\sqrt{8}}\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} e^{-\frac{m \omega}{2 \hbar} x^{2}} H_{2}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)
$$

and we need to evaluate the Hermite polynomial of order 2.

$$
H_{2}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)=\sum_{n} a_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)^{n}=a_{0}+a_{2}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)^{2}
$$

where the coefficient a_{2} is determined from the recursion relation.
$a_{n+2}=\left[\frac{2 n-\lambda}{(n+2)(n+1)}\right] a_{n} \rightarrow a_{2}=-\frac{\lambda}{2} a_{0}$
Thus $H_{2}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)=a_{0}-\frac{\lambda}{2} a_{0}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)^{2}$. The unknown coefficient a_{0} is determined by setting the coefficient in front of the highest power of x^{2} equal to $2^{2}=4$. We have $-\frac{\lambda}{2} a_{0}=4 \rightarrow a_{0}=-\frac{8}{\lambda}=-\frac{8}{4}=-2$, where $\lambda=\frac{2 E_{2}}{\hbar \omega}-1=\frac{2\left(\frac{5}{2} \hbar \omega\right)}{\hbar \omega}-1=4$. $\lambda=\frac{2 E_{2}}{\hbar \omega}-1=\frac{2\left(\frac{5}{2} \hbar \omega\right)}{\hbar \omega}-1=4$. Evaluating the Hermite polynomial we have $H_{2}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)=-2+4 \frac{m \omega}{\hbar} x^{2}=\left(4 \frac{m \omega}{\hbar} x^{2}-2\right)$. This could also be evaluated on Mathematica. The code is below.
$\min \mid=$: Hermiten [2, Sgrt[m*W/hbar] $* x]$

$$
\text { Oullily }=-2+\frac{4 \pi w x^{2}}{h b a r}
$$

So the analytic solution is

$$
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{8}}\left(\frac{4 m \omega}{\hbar} x^{2}-2\right)\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} e^{-\frac{m \omega}{2 \hbar} x^{2}}=\frac{1}{\sqrt{2}}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right)\left|\psi_{0}\right\rangle
$$

Using the raising operator, $a_{+}=\frac{1}{\sqrt{2 m \hbar \omega}}(-i p+m \omega x)$ we will raise
$\left|\psi_{0}\right\rangle=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} e^{-\frac{m \omega}{2 \hbar} x^{2}}$ to $\left|\psi_{1}\right\rangle$ and then $\left|\psi_{1}\right\rangle$ to $\left|\psi_{2}\right\rangle$. In the momentum operator we need to evaluate $\frac{d}{d x}\left|\psi_{0}\right\rangle$, which is $\frac{d}{d x}\left|\psi_{0}\right\rangle=-\frac{m \omega}{\hbar} x\left|\psi_{0}\right\rangle$. Applying the raising operator $\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2 m \hbar \omega}}(m \omega x+m \omega x)\left|\psi_{0}\right\rangle=\sqrt{\frac{2 m \omega}{\hbar}} x\left|\psi_{0}\right\rangle$. Now we raise $\left|\psi_{1}\right\rangle$ to $\left|\psi_{2}\right\rangle=a_{+} A_{2}\left|\psi_{1}\right\rangle$. Evaluating the derivative in the momentum operator
$\frac{d}{d x}\left|\psi_{1}\right\rangle=\sqrt{\frac{2 m \omega}{\hbar}} \frac{d}{d x}\left(x\left|\psi_{0}\right\rangle\right)=\sqrt{\frac{2 m \omega}{\hbar}}\left(\left|\psi_{0}\right\rangle+x \frac{d}{d x}\left|\psi_{0}\right\rangle\right)=\sqrt{\frac{2 m \omega}{\hbar}}\left(1-\frac{m \omega}{\hbar} x^{2}\right)\left|\psi_{0}\right\rangle$.
Now applying the raising operator
$\left|\psi_{2}\right\rangle=\frac{A_{2}}{\sqrt{2 m \hbar \omega}}\left[-\hbar \sqrt{\frac{2 m \omega}{\hbar}}\left(1-\frac{m \omega}{\hbar} x^{2}\right)\left|\psi_{0}\right\rangle+\sqrt{\frac{2 m \omega}{\hbar}} m \omega x^{2}\left|\psi_{0}\right\rangle\right]$
$\left|\psi_{2}\right\rangle=\frac{A_{2} \hbar}{\sqrt{2 m \hbar \omega}} \sqrt{\frac{2 m \omega}{\hbar}}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right)\left|\psi_{0}\right\rangle$
$\left|\psi_{2}\right\rangle=A_{2}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right)\left|\psi_{0}\right\rangle$
Now we need to normalize the solution to determine A_{2}. Normalizing we find that $P=1=\left\langle\psi_{2} \mid \psi_{2}\right\rangle=A_{2}^{2}\left(\frac{m \omega}{\hbar \pi}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right)^{2} e^{-\frac{m \omega}{\hbar} x^{2}} d x=2 A_{2}^{2} \rightarrow A_{2}=\frac{1}{\sqrt{2}}$. This integral was done on Mathematica. The code is below. Thus the normalized wave function is $\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right)\left|\psi_{0}\right\rangle$, which agrees with the analytic solution.

```
In[2]:= Integrate[A2^2 *Sqrt[(m*w) /(Pi * hbar)] * ((2*m*w/hbar) * x^2 - 1) ^ 2 *
    Exp[-m*w*x^2/hbar], {x, -Infinity, Infinity}]
Out[2]= ConditionalExpression[2A2', Re[\frac{mw}{hbar}}]>0
```

5. Consider a charged particle of mass m and charge q in a one-dimensional harmonic oscillator potential. Suppose that an electric field E is turned on so that the potential energy is given by $V=\frac{m \omega^{2}}{2} x^{2}-q \mathrm{E} x$. What are the energies of the states? Hint:
The problem is easier with a change of variables and thus let $y=x-\frac{q \mathrm{E}}{m \omega^{2}}$.
We start with the SWE and use the hint. The SWE is for the harmonic oscillator in the presence of zero electric field is:
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d x^{2}}+V \psi_{n}=E_{n} \psi_{n}$
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d x^{2}}+\frac{m \omega^{2}}{2} x^{2} \psi_{n}=E_{n} \psi_{n}$
where the energies are given as $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$.
In the presence of the electric field, the SWE is
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d x^{2}}+V \psi_{n}=E_{n}^{\prime} \psi_{n}$
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d x^{2}}+\frac{m \omega^{2}}{2} x^{2} \psi_{n}-q E x \psi_{n}=E_{n}^{\prime} \psi_{n}$
Using the hint, we can write that $y=x-\frac{q \mathrm{E}}{m \omega^{2}} \rightarrow d y=d x$, and $x=y+\frac{q \mathrm{E}}{m \omega^{2}}$ so that the SWE becomes

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d x^{2}}+V \psi_{n}=E_{n}^{\prime} \psi_{n} \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d x^{2}}+\left(\frac{m \omega^{2}}{2} x^{2}-q \mathrm{E} x\right) \psi_{n}=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d x^{2}}+\frac{m \omega^{2}}{2} x\left(x-\frac{q \mathrm{E}}{m \omega^{2}}-\frac{q \mathrm{E}}{m \omega^{2}}\right) \psi_{n}=E_{n}^{\prime} \psi_{n} \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d y^{2}}+\frac{m \omega^{2}}{2}\left(y+\frac{q \mathrm{E}}{m \omega^{2}}\right)\left(y-\frac{q \mathrm{E}}{m \omega^{2}}\right) \psi_{n}=E_{n}^{\prime} \psi_{n} \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d y^{2}}+\frac{m \omega^{2}}{2} y^{2} \psi_{n}-\frac{q^{2} \mathrm{E}^{2}}{2 m \omega^{2}} \psi_{n}=E_{n}^{\prime} \psi_{n} \\
& \therefore-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d y^{2}}+\frac{m \omega^{2}}{2} y^{2} \psi_{n}=\left(E_{n}^{\prime}+\frac{q^{2} \mathrm{E}^{2}}{2 m \omega^{2}}\right) \psi_{n}
\end{aligned}
$$

This form of the SWE for the harmonic oscillator looks exactly like the original form and therefore we have
$E_{n}=E_{n}^{\prime}+\frac{q^{2} \mathrm{E}^{2}}{2 m \omega^{2}}$
$\left(n+\frac{1}{2}\right) \hbar \omega=E_{n}^{\prime}+\frac{q^{2} \mathrm{E}^{2}}{2 m \omega^{2}}$
$\therefore E_{n}^{\prime}=\left(n+\frac{1}{2}\right) \hbar \omega-\frac{q^{2} \mathrm{E}^{2}}{2 m \omega^{2}}$
and the energies of the states are those of the original harmonic oscillator lowered by a constant $\frac{q^{2} \mathrm{E}^{2}}{2 m \omega^{2}}$.
6. Griffith's 3.10

The ground state wave function of the infinite square well is given as $\psi_{1}=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi}{a} x\right)$. Apply the momentum operator and we have $\hat{p} \psi_{1}=-i \hbar \frac{d}{d x}\left(\sqrt{\frac{2}{a}} \sin \left(\frac{\pi}{a} x\right)\right)=-i \hbar \sqrt{\frac{2}{a}}\left(\frac{\pi}{a}\right) \cos \left(\frac{\pi}{a} x\right)$. Therefore since we do not get the wave function back multiplied by a constant, the ground state wave function of the infinite square well is not an eigenstate of the momentum operator.
7. Griffith's 3.13
$[A B, C]=A B C-C A B=A B C-C A B+(A C B-A C B)$
a. $[A B, C]=A[B, C]-[C, A] B=A[B, C]+[A, C] B$
b. $\quad\left[x^{n}, p\right] \Rightarrow\left[x^{n}, p\right] f=-i \hbar x^{n} \frac{d f}{d x}-\left(-i \hbar \frac{d}{d x}\left(x^{n} f\right)\right)=-i \hbar x^{n} \frac{d f}{d x}+i \hbar\left(n x^{n-1} f+x^{n} \frac{d f}{d x}\right)$.

$$
\left[x^{n}, p\right] f=i \hbar n x^{n-1} f \rightarrow\left[x^{n}, p\right]=i \hbar n x^{n-1}
$$

c.

$$
\begin{aligned}
{[f, p] } & \Rightarrow[f, p] q=f p q-p f q=-i \hbar f \frac{d q}{d x}-\left(-i \hbar \frac{d}{d x}(f q)\right) \\
& =-i \hbar f \frac{d q}{d x}+i \hbar\left(\frac{d f}{d x} q+f \frac{d q}{d x}\right) \\
{[f, p] q } & =i \hbar \frac{d f}{d x} q \rightarrow[f, p]=i \hbar \frac{d f}{d x}
\end{aligned}
$$

