Physics 220 Homework #4 Spring 2017 Due Wednesday, 5/3/17

- 1. Griffith's 2.12
- 2. Griffith's 2.15
- 3. Prove that $\hat{H}(\hat{a}_{-}|\psi_{n}\rangle) = (E_{n} \hbar\omega)|\psi_{n-1}\rangle$.
- 4. Starting from $|\psi_0\rangle$, use the raising operator to determine $|\psi_2\rangle$. Don't forget to normalize your solution. Then, using the analytic solution to the harmonic oscillator $|\psi_m\rangle = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^m m!}} e^{-\frac{m\omega}{2\hbar}x^2} H_m\left(\sqrt{\frac{m\omega}{\hbar}x}\right)$ show that your solution using the raising operator for $|\psi_2\rangle$ agrees with the analytic solution.
- 5. Consider a charged particle of mass *m* and charge *q* in a one-dimensional harmonic oscillator potential. Suppose that an electric field E is turned on so that the potential energy is given by $V = \frac{m\omega^2}{2}x^2 qEx$. What are the energies of the states? Hint:

The problem is easier with a change of variables and thus let $y = x - \frac{qE}{m\omega^2}$.

- 6. Griffith's 3.10
- 7. Griffith's 3.13