
Physics 220 
Homework #5 
Spring 2017 
Due Wednesday, 5/10/17 
 
** Note this assignment has been updated from the original one.  ** 
 
1. Griffith’s 4.11 

a. From equation 4.82 we have R20 =
c
2a
(1− r

2a
)e

− r
2a .  Applying the normalization 

condition (and evaluating the integral on Mathematica) and determining the wave 
function we have: 
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b. From equation 4.83 we have R21 =
c
4a2

re
− r
2a .  Applying the normalization 

condition (evaluating the integral on Mathematica) and determining the wave 
function we have:  
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2. Griffith’s 4.14 

The probability is:  P = R 2 r2 dr
0

∞
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0
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∫ and for the ground state of 

hydrogen we have ψ 100 = R10Y0
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a .  Thus we have 
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To find a maximum we set the derivative of the radial probability density equal to 
zero and solve for the r-coordinate.  We have: 
d
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3. Griffith’s 4.39 

We start with the radial wave equation
 

d
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⎛
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V − E( )R = l l +1( )R  and use 

the change of variables u = rR to write the radial wave equation as 
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Distributing the constant term through the parenthesis we have 
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we have dρ =αdr .   Using this the radial differential equation becomes a 
dimensionless differential equation
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Next we need to determine the approximate form of the solution for large and small 
ρ and then couple the solutions together. 
 
As ρ →∞ , u→ 0 and the dimensionless differential equation takes the approximate 

form d
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dρ 2 − ρ 2u ~ 0→ u = Ae
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As ρ → 0 , u→ 0 and the dimensionless differential equation takes the approximate 

form d
2u

dρ 2 −
l l +1( )
ρ 2 ~ 0→ u = Cρ− l + Dρ l+1 .  As ρ → 0 , u→ 0 and 

u = 0 = C
0
+ D 0( )→C = 0 .  Thus u ≈ Dρ l+1 . 

Thus for any ρ  we assume that u ρ( ) = e−
ρ2

2 ρ l+1v ρ( )  where we absorb the constants 
into the function v ρ( ) , which we need to determine.  To determine v ρ( )we 
substitute this solution for u ρ( ) into the dimensionless form of the differential 
equation.  Doing this we have: 
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derivatives were taken on Mathematica.  The code is below.  Now we take this 
equation and multiply and divide the right-hand-side by ρ 2 . 
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Inserting this expression into the dimensionless form of the differential equation and 

dividing out the common e
−ρ

2

2 ρ l+1 terms, we arrive at 
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with non-constant coefficients and we assume a polynomial series solution given by 
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and re-indexing d
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becomes 

 

d 2v
dρ 2 + 2

l +1
ρ

− ρ
⎛
⎝⎜

⎞
⎠⎟
dv
dρ

+ k2

α 2 − 3− 2l
⎛
⎝⎜

⎞
⎠⎟
v = 0

cq+2 q + 2( ) q +1( )− 2cqq +
k2

α 2 − 3− 2l
⎛
⎝⎜

⎞
⎠⎟
cq

⎡

⎣
⎢

⎤

⎦
⎥ρ

q

q=0

∞

∑ = 0
 

The only way this infinite sum can vanish is if coefficients all vanish.  This leads us 
to a recursion relation that we can use to determine the energy associated with the 

system.  Thus cq+2 q + 2( ) q +1( )− 2cqq +
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4. Griffith’s 4.44 parts a and b only. 

a. The wave function ψ 433 can be generated by hand, but we can construct it from 
the tables given in Griffiths.  We need R43 and Y3

3 .  From page 139 
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b. The expectation value of the radial coordinate is given by 
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The integrals were done on Mathematica.  The code is below. 

 
 
5. Griffith’s 4.45 

a. The ground state of hydrogen is given by ψ 100 = R10Y0
0 = 1

πa3
e
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The probability of finding the electron in the nucleus is given by 
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The integrals were evaluated on Mathematica.  The code is below. 

 



b.   Let ε = 2b
a

and we have 
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c.   Let P = 4
3
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d. For a = 0.5 ×10−10m and b = 1×10−15m , 
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⎝⎜

⎞
⎠⎟

3

= 1.1×10−14 . 

 
6. Radial Probability density for hydrogen 

a. Calculate the location at which the radial probability density is a maximum for the 
n = 2, l = 1state of the hydrogen atom. 

 

The radial probability density is dP
dr

= 4πr2 R21 r( ) 2 ,  

where R21 =
2
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⎛
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derivative of the radial probability density equal to zero and solve for the radial 
coordinate.  We have 
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⎜
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⎠
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⎠⎟
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b. Calculate the expectation value of the radial coordinate in this state. 

The expectation value of the radial coordinate is given by: 

r = R21 rR21 = 1
24a5

re
− r
2a

2

rr2 dr
0

∞

∫ = 1
24a5

r5e
− r
a dr

0

∞
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The integral was evaluated on mathematica.  The code is below. 



 
c. Are the answers to parts a and b the same?  If they are, what is the physical 

significance for the fact that they are?  If they are not, what is the physical 
significance for the fact that they are not. 

 
These two values are not the same.  The physical reason that they are not the same 
is that for the expectation value of the radial coordinate the wave function extends 
to infinity.  

 
 


