Physics 220

Homework #5

Spring 2017

Due Wednesday, 5/10/17

** Note this assignment has been updated from the original one. **

1. Griffith’s 4.11

r

a. From equation 4.82 we have R,, = 2i(1 — 2L)e_5 . Applying the normalization
a a

condition (and evaluating the integral on Mathematica) and determining the wave
function we have:

02 I r 2 _L 2 C2 3 2
4a2£(l_ﬂ) e oridr=- s(2a%) > c= -

a

1=

21 r.o— 1 1 r.o-——
=R Yoz\/—— 1——)e 24 = 1——)e 24
“//200> 2070 P 2a( 2a) an \/87[(13 ( 2a)

r

b. From equation 4.83 we have R,, = ﬁre_g . Applying the normalization
a

condition (evaluating the integral on Mathematica) and determining the wave
function we have:
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2. Griffith’s 4.14
) n 2
The probability is: P = J|R|2 r a,’rj|®|2 sin6do J |®|” d¢ and for the ground state of
0 0 0
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hydrogen we have |y,,,) =R, Y, = a . Thus we have
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P= J e_“ r er. sm@d@j do= J ¢ ar’dr, so that the probability density is
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To find a maximum we set the derivative of the radial probability density equal to
zero and solve for the r-coordinate. We have:
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3. Griffith’s 4.39
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We start with the radial wave equat10nd—(r —)——m(V E)R=1(I+1)R and use

r dr h’
the change of variables u = rR to write the radial wave equation as
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d—b; - 2—’? MO s h—l(l +1) [u=0. (This derivation was done in class.)
dr h 2 2m

Distributing the constant term through the parenthesis we have
d2u+(_m2w2r2+2mE_l(l+l) Eandp:\/@r:m
dr’ n? n r? 2 h ’
we have dp =adr. Using this the radial differential equation becomes a
dimensionless differential equation
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Next we need to determine the approximate form of the solution for large and small
p and then couple the solutions together.

As p — e, u — 0 and the dimensionless differential equation takes the approximate
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As p — 0, u — 0and the dimensionless differential equation takes the approximate
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.As p—0,u—0and
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Thus for any p we assume that u(p)=e 2 p

“v(p) where we absorb the constants

into the function v(p), which we need to determine. To determine v(p)we

substitute this solution for u( p) into the dimensionless form of the differential

equation. Doing this we have:
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derivatives were taken on Mathematica. The code is below. Now we take this
equation and multiply and divide the right-hand-side by p*.
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Inserting this expression into the dimensionless form of the differential equation and
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dividing out the common e ? p™ terms, we arrive at

o
with non-constant coefficients and we assume a polynomial series solution given by
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d ‘; +2 I+l P & + k—z —3-21 |v=0which is a 2" order differential equation
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v(p)=Y,c,p’. Taking the derivatives we have:
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indexing we have 2(I+1) Y, c,,,(g+2)p? and there is no g =—1term. Thus the add
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terms involving a, must be zero. Further, —2p d_v = —22 c;jp’ and re-indexing
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-2p ;l_v = —22 c,qp? . The second derivative term becomes dp
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2 (g+2)(g+1)p?. The differential equation for v(p)

g=0
becomes
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The only way this infinite sum can vanish is if coefficients all vanish. This leads us

to a recursion relation that we can use to determine the energy associated with the
2

system. Thus c,,(q+2)(g+1)-2c,g+ (k—z -3- le ¢,=0. The recursion relation
a

isc.,= ¢ . The index ¢ increases and at some ¢ , ¢
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approximates to zero and thus the numerator has to vanish. We have
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the energy we have, defining n=qg+1[, E= (n+§)ha) .
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vip_]
u=(p"(m+1)) *Exp[-p"~2/2] *v[p]
Simplify[D[D[u, p], p]]
ou[ssl= v[p
e
ouEgl- e 2 pr T v(p

PI

ool e 2 p ' ((mem® -3p? -2mp® +p*) vipl +p {2 {1+m-p*) v (p) +pVv'(p)))

Griffith’s 4.44 parts a and b only.
a. The wave function |1// 433> can be generated by hand, but we can construct it from

the tables given in Griffiths. We need R, and Y;'. From page 139

r

35 , 1 2 P
Y? =—,|——sin’ 6¢* and from page 154, R, =————a 2(—) e 4.
* " Vean pag © 7768435 \a
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Therefore |y,,;) = R,.Y; = TN 645 (1) e *asin’@e™ .
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b. The expectation value of the radial coordinate is given by
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The integrals were done on Mathematica. The code is below.
Ins}= Integrate[r"9«Exp[-r/ (2%a)], {r, O, Infinity}]

(371589120a1°)(%)(27r)

Out[s]= ConditionalExpression:371 589120 a:J, Re(a) » 0:

In[3= Integrate[Sin[t] "7, {t, 0, Pi}]
32
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ins]= Integrate[l, {phi, 0, 2%Pi}]

Outle]= 2 7T

Inf4]= 768 %« 768 x 64 » 3.14159

Ouf4)= 1.18591 x 10°

5. Qriffith’s 4.45
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The probability of finding the electron in the nucleus is given by
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a. The ground state of hydrogen is given by |y, ) = R,,Y; =
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The integrals were evaluated on Mathematica. The code is below.

Integrate[r*2+Exp[-2%xr/a], {r, 0, b}]
2b

1 f , .
Out[11]= Zalaz a®+2ab+2b®)e =

In[12}= Integrate[Sin[theta], {theta, 0, Pi}]
Integrate[l, {phi, 0, 2%Pi}]

Out[12)= 2
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b. Let €= % and we have
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d. Fora=05x10"mand b=1x10"m,
3 -15

JAb _4f DOm0

3a° 3l05%10"m

6. Radial Probability density for hydrogen
a. Calculate the location at which the radial probability density is a maximum for the
n=2,l=1state of the hydrogen atom.
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The radial probability density is Z—P =477°|R,, (r)
r
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where R, = ‘/— — |re ** = ,/ =re **. To find the maximum, we set the
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derivative of the radial probability density equal to zero and solve for the radial

coordinate. We have
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b. Calculate the expectation value of the radial coordinate in this state.
The expectation value of the radial coordinate is given by:
J.rse_; dr =
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The integral was evaluated on mathematica. The code is below.
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In[14]):=

Integrate[r"5%Exp[-r/a], {r, 0, Infinity}]

Out[14])= ConditionalExpression:120 a®, Re(a) » 0|

c. Are the answers to parts a and b the same? If they are, what is the physical
significance for the fact that they are? If they are not, what is the physical
significance for the fact that they are not.

These two values are not the same. The physical reason that they are not the same
is that for the expectation value of the radial coordinate the wave function extends
to infinity.



