
 
 
 
 

Physics 220 
Homework #6 
Spring 2017 
Due Wednesday, 5/17/17 

 
1. An electron in the ground state of tritium, for which the nucleus consists of a proton and two 

neutrons.  A nuclear reaction instantaneously changes the nucleus to He3 , that is, two 
protons and one neutron.  Calculate the probability that the electron remains in the ground 
state of He3 . 

 

From class, we had the expression 
 

Zme2
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2 .  We set Z = 1for hydrogen and define the Bohr 

radius as 
 
a = me2

4πε0!
2 .  Leaving Z for any one-electron atom, we can replace the Bohr radius 

in the hydrogen wave functions with a
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The probability that helium is found in the ground state is given by 

ψ 100,H ψ 100,He = dφ
0

2π

∫ sinθ dθ
0

π

∫
1
πa3

e
− r
a

0

∞

∫
8

πa3
e
−2r
a r2dr = 4π 8

πa3
e
−3r
a r2 dr

0

∞

∫

ψ 100,H ψ 100,He = 4π 8
πa3

2a3

27
⎡

⎣
⎢

⎤

⎦
⎥ = 0.838 = 83.3%

. 

 
2. Griffith’s 4.19 

a. The commutator of the z-component of the angular momentum with the coordinates are: 

 

[Lz , x]= [xpy − ypx , x]= xpyx − ypxx − xxpy + xypx = x[py , x]+ y[x, px ]= i!y
[Lz , y]= [xpy − ypx , y]= xpyy − ypxy − yxpy + yypx = x[py , y]+ y[y, px ]= −i!x
[Lz , z]= [xpy − ypx , z]= xpyz − ypxz − zxpy + zypx = x[py , z]+ y[z, px ]= 0

 

where we have used the results from Griffith’s problem 4.1, where

 

[ri , pj ]= −[pi ,rj ]= i!δ ij = i!
0 if i ≠ j
1 if i = j

⎧
⎨
⎪

⎩⎪
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The commutator of the z-component of the angular momentum with the momentum operators are: 



 

[Lz , px ]= [xpy − ypx , px ]= [xpy , px ]− [ypx , px ]
= {x[py , px ]+ [x, px ]py}− {y[px , px ]+ [y, px ]px}
= 0 + i!py − 0 − 0

[Lz , px ]= i!py
[Lz , py ]= [xpy − ypx , pyx ]= [xpy , py ]− [ypx , py ]

= {x[py , py ]+ [x, py ]py}− {y[px , py ]+ [y, py ]px}
= 0 + 0 − 0 − i!px

[Lz , py ]= −i!px
[Lz , pz ]= [xpy − ypx , pz ]= [xpy , pz ]− [ypx , pz ]

= {x[py , pz ]+ [x, pz ]py}− {y[px , pz ]+ [y, pz ]px}
= 0 + 0 − 0 − 0

[Lz , px ]= 0

 

where in both parts, we’ve used from homework #4, problem Griffith’s 3.13, where 
[AB,C]= A[B,C]+ [A,C]B  

b. In order to do this part, we require two relationships between commutators.  The first is a footnote 
from page 160, [A,B +C]= [A,B]+ [A,C] and the second is from homework #4, problem Griffith’s 
3.13, where [AB,C]= A[B,C]+ [A,C]B and by analogy [A,BC]= [A,B]C + B[A,C] .  Thus,  

 

[Lz ,Lx ]= [Lz , ypz − zpy ]= [Lz , ypz ]− [Lz , zpy ]
[Lz ,Lx ]= {[Lz , y]pz + y[Lz , pz ]}− {[Lz , z]py + z[Lz , py ]}
[Lz ,Lx ]= {−i!xpz + 0}− {0 − zi!px}

[Lz ,Lx ]= −i! xpz − zpx( )
[Lz ,Lx ]= i!Ly

 

where we used [A,BC]= [A,B]C + B[A,C]again. 
 
c. The commutator of the z-component of the angular momentum and the r2 operator is: 

 

[Lz ,r
2 ]= {Lz , x

2 + y2 + z2 ]= [Lz , x
2 ]+ [Lz , y

2 ]+ [Lz , z
2 ]

[Lz ,r
2 ]= [Lz , xx]+ [Lz , yy]+ [Lz , zz]

[Lz ,r
2 ]= [Lz , x]x + x[Lz , x]{ }+ [Lz , y]y + y[Lz , y]{ }+ [Lz , z]z + z[Lz , z]{ }

[Lz ,r
2 ]= i!yx + i!yx{ }+ {−i!xy − i!yx}+ {0 + 0}

[Lz ,r
2 ]= 0

 

 
The commutator of the z-component of the angular momentum and the p2 operator is: 

 

[Lz , p
2 ]= {Lz , px

2 + py
2 + pz

2 ]= [Lz , px
2 ]+ [Lz , py

2 ]+ [Lz , pz
2 ]

[Lz , p
2 ]= [Lz , px px ]+ [Lz , py py ]+ [Lz , pz pz ]

[Lz , p
2 ]= [Lz , px ]px + px[Lz , px ]{ }+ [Lz , py ]py + py[Lz , py ]{ }+ [Lz , pz ]pz + pz[Lz , pz ]{ }

[Lz , p
2 ]= i!py px + i!px py{ }+ {−i!px py − i!py px}+ {0 + 0}

[Lz , p
2 ]= 0

 

d. Since p2 and r2 commute with each component of L , L commutes with the Hamiltonian. 
 



3. Griffith’s 4.22 
a. Since the largest value of ml  is l , there is no state ml = l +1 .  Thus L+Yl

l = 0 . 

b. The raising operator is given in equation 4.130 by 
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with this we have  
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.  Using the fact that 
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l we have that dYl
l
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l∫ = il dφ∫ → lnYl

l = ilφ +C '→Yl
l = Ceilφ .  The 

constant Cmay be a constant independent of φ , but it could have a θ dependence.   
Using this result in the expression with the raising operator we have:   
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Next we solve this forC  and find: C = Asinlθ .  Thus up to the normalization we have 
Yl

l = Asinlθeilφ  
c. Normalizing this solution we have:  
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Γ l + 3
2( )and Γ l +1( ) are gamma functions. 

The Mathematica code is below. 

 
 

4. Griffith’s 4.44 part c 

 

Lx
2 + Ly

2( )ψ 433 = L2 − Lz
2( )ψ 433 = L2 ψ 433 − Lz

2 ψ 433

Lx
2 + Ly

2( )ψ 433 = 3 3+1( )!2 ψ 433 − 3!( )2 ψ 433 = 3!2 ψ 433

Lx
2 + Ly

2( )ψ 433 == 3!2 ψ 433

 

 
and thus 

 
Lx
2 + Ly

2( ) = 3!2 .  Since this is the only state, the probability of returning this value is 
unity. 

 
5. Consider the hydrogen atom wave function ψ 432 .  What are 

a. What is the total energy in electron volts? 

The energy is given by En = −13.6eV
n2

= −13.6eV
42

= −0.85eV . 

b. What is the expectation value of the radial coordinate? 
The expectation value of the radial coordinate is r = ψ 432 rψ 432 .  Evaluating: 
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The Mathematica code is shown below for the integrals. 

 
 

c. What is the total angular momentum? 
The total angular momentum is 

 L ψ nlm = l l +1( )!ψ nlm → L ψ 432 = 3 3+1( )!ψ 432 = 12!ψ 432 which is  12! . 
d. What is the z-component of the total angular momentum? 

The z-component of the angular momentum is 

 Lz ψ nlm = ml!ψ nlm → Lz ψ 432 = 2!ψ 432 , which is  2! . 


