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May 22, 2015 
 
 
 

Name___________________________________ 
 

 
Please read and follow these instructions carefully: 
 

• Read all problems carefully before attempting to solve them. 
• Your work must be legible, and the organization clear. 
• You must show all work, including correct vector notation. 
• You will not receive full credit for correct answers without adequate explanations. 
• You will not receive full credit if incorrect work or explanations are mixed in with 

correct work.  So erase or cross out anything you don’t want graded. 
• Make explanations complete but brief.  Do not write a lot of prose. 
• Include diagrams. 
• Show what goes into a calculation, not just the final number.  For example

  

� 

! p ≈ m " v = 5kg( ) × 2 m
s( ) =10 kg⋅m

s  
• Give standard SI units with your results unless specifically asked for a certain 

unit. 
• Unless specifically asked to derive a result, you may start with the formulas given 

on the formula sheet including equations corresponding to the fundamental 
concepts. 

• Go for partial credit.  If you cannot do some portion of a problem, invent a 
symbol and/or value for the quantity you can’t calculate (explain that you are 
doing this), and use it to do the rest of the problem. 

• Each free-response part is worth 25 points 
 
 
 
 
 
 
 

 
I affirm that I have carried out my academic endeavors with full academic honesty. 

 
______________________________ 

Problem #1 /50 
Problem #2 /50 

Total /100 



1.	   An electron (mass m  and charge e ) is confined inside a hollow sphere of radius 
 a  and the spherical wall is impenetrable.   
 
 (Hints:  
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- Assume a solution R(r)Y (θ ,φ) , let the separation constant be l l +1( ) , and 

transform the solution for the radial equation using R(r) = u
r
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a. What is the ground state wave function ψ n,l =ψ 0,0 ? 

 
 Starting with the SWE: 
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  Let ψ = R(r)Y (θ ,φ) and insert into the SWE: 
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  The radial equation: 
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  Using the hint that R = u
r

and substituting this into the radial equation we have  
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  Substituting this into the radial equation we have: 
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 For the ground state n = 0; l = 0 so the radial equation reduces to:
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 Using the fact that as r→ 0 the solutions need to be finite, let B = 0 . Therefore, 

 R(r) = A sin(kr)
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.  Normalizing the solution we have: 
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 Lastly to form the ground state wave function we join the two solutions:  
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b. What is the ground state energy? 
 
 
 From part a,  

 

 

− !
2

2m
d 2u
dr2

= Eu→ d 2u
dr2

= − 2mE
!2

u→ u = A
k
sin(kr)− B

k
cos(kr)

k2 = 2mE
!2

. 

 
 Applying the condition that at r = 0 , u = 0 = Asin(0)+ Bcos(0) , we have B = 0 .  

 Therefore u = A
k
sin(kr)and at r = a , u = 0 = A

k
sin(ka)→ ka = nπ . 

 

 Thus 
 
k2 = 2mE

!2
= n

2π 2

a2
→ E = n

2!2π 2

2ma2
= !

2π 2

2ma2
for n = 1  the ground state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.   A particle of mass m is incident from the left along the x-axis and strikes a delta-
function potential barrier V (x) =V0δ (x)where is a constant V0 .  

 
a. When the particle obeys the Schrödinger equation the wave function ψ (x) to the 

right of the barrier (for x > 0 ) is connected at with the wave function ψ (x) to the 
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b. Suppose that the wave function of the particle having energy E is given by eikx

where 
 
k = 2mE

!2
.  Determine the reflection and transmission coefficients ( R  

and T ) as functions of q and k .  Explicitly determine R  and T and show that 
R +T = 1 .  Do not use T = 1− R or R = 1−T .  
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 Here, D = 0 as there is nothing to reflect the waves back as x→∞ .  Now we 
 apply the boundary conditions that the wave function has to be continuous at 
 x = 0which gives ψ 0( ) = A + B = C .  Now using the results from part a for the 
 discontinuous derivative:   
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 Now to calculate the transmission coefficient:   
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Physics 220 Equations 
Useful Integrals:
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Formulas :
c = fλ
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Constants:
g = 9.8 m

s2

G = 6.67 ×10−11 Nm2

kg2

c = 3×108 m
s

σ = 5.67 ×10−8

kB = 1.38 ×10
−23 J

K

1eV = 1.6 ×10−19 J
h = 6.63×10−34 Js;
me = 9.11×10

−31kg = 0.511MeV
c2

mp = 1.67 ×10
−27 kg = 938 MeV

c2

mn = 1.69 ×10
−27 kg = 939 MeV

c2

mE = 6 ×10
24 kg

RE = 6.4 ×10
6m


