Physics 220

In-Class Exam \#2

May 22, 2015

Name \qquad

Please read and follow these instructions carefully:

- Read all problems carefully before attempting to solve them.
- Your work must be legible, and the organization clear.
- You must show all work, including correct vector notation.
- You will not receive full credit for correct answers without adequate explanations.
- You will not receive full credit if incorrect work or explanations are mixed in with correct work. So erase or cross out anything you don't want graded.
- Make explanations complete but brief. Do not write a lot of prose.
- Include diagrams.
- Show what goes into a calculation, not just the final number. For example $|\vec{p}| \approx m|\vec{v}|=(5 \mathrm{~kg}) \times\left(2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=10 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}$
- Give standard SI units with your results unless specifically asked for a certain unit.
- Unless specifically asked to derive a result, you may start with the formulas given on the formula sheet including equations corresponding to the fundamental concepts.
- Go for partial credit. If you cannot do some portion of a problem, invent a symbol and/or value for the quantity you can't calculate (explain that you are doing this), and use it to do the rest of the problem.
- Each free-response part is worth 25 points

Problem \#1	$/ 50$
Problem \#2	$/ 50$
Total	$/ 100$

I affirm that I have carried out my academic endeavors with full academic honesty.

1. An electron (mass m and charge e) is confined inside a hollow sphere of radius a and the spherical wall is impenetrable.
(Hints:

- $\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial^{2}}{\partial \phi^{2}}$
- Assume a solution $R(r) Y(\theta, \phi)$, let the separation constant be $l(l+1)$, and transform the solution for the radial equation using $R(r)=\frac{u}{r}$.
- The general solution to the equation $-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[V+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u$ is $u(r)=r R(r)=r\left(A J_{l}(k r)+B N_{l}(k r)\right)$, where $J_{l}(x)=(-1)^{l}\left(\frac{1}{x} \frac{d}{d x}\right)^{l} \frac{\sin x}{x}$ are the spherical Bessel functions of order l (and are finite at the origin) and $N_{l}(x)=(-1)^{l+1}\left(\frac{1}{x} \frac{d}{d x}\right)^{l} \frac{\cos x}{x}$ are the spherical Neumann functions of order l which are infinite at the origin.
- The following integral may be useful: $\left.\int_{0}^{\infty} \frac{\sin ^{2}(n x)}{x^{2}} d x=\frac{n \pi}{2}\right)$
a. What is the ground state wave function $\psi_{n, l}=\psi_{0,0}$?

Starting with the SWE:

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi \\
& -\frac{\hbar^{2}}{2 m}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]+V \psi=E \psi
\end{aligned}
$$

Let $\psi=R(r) Y(\theta, \phi)$ and insert into the SWE:
$\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R Y}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial R Y}{\partial \theta}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial^{2} R Y}{\partial \phi^{2}}\right]-\frac{2 m}{\hbar^{2}} V R Y=-\frac{2 m}{\hbar^{2}} E R Y$ $\left[\frac{Y}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{R}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{R}{r^{2} \sin \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]-\frac{2 m}{\hbar^{2}} V R Y=-\frac{2 m}{\hbar^{2}} E R Y$
$\left[\frac{1}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{1}{Y \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{Y \sin \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]-\frac{2 m r^{2}}{\hbar^{2}} V=-\frac{2 m r^{2}}{\hbar^{2}} E$
$\left[\frac{1}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)-\frac{2 m r^{2}}{\hbar^{2}} V+\frac{2 m r^{2}}{\hbar^{2}} E\right]+\left[\frac{1}{Y \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{Y \sin \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]=0$
$\left[\frac{1}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)-\frac{2 m r^{2}}{\hbar^{2}} V+\frac{2 m r^{2}}{\hbar^{2}} E\right]=l(l+1)$

The radial equation: $\left[\frac{1}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)-\frac{2 m r^{2}}{\hbar^{2}} V+\frac{2 m r^{2}}{\hbar^{2}} E\right]=l(l+1)$.
Using the hint that $R=\frac{u}{r}$ and substituting this into the radial equation we have
$\frac{d R}{d r}=\frac{d}{d r}\left(\frac{u}{r}\right)=-\frac{u}{r^{2}}+\frac{1}{r} \frac{d u}{d r}$
$r^{2} \frac{d R}{d r}=-u+r \frac{d u}{d r}$
$\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=\frac{d}{d r}\left(-u+r \frac{d u}{d r}\right)=-\frac{d u}{d r}+\frac{d u}{d r}+r \frac{d^{2} u}{d r^{2}}=r \frac{d^{2} u}{d r^{2}}$
Substituting this into the radial equation we have:
$\left[\frac{r^{2}}{u} \frac{d^{2} u}{d r^{2}}-\frac{2 m r^{2}}{\hbar^{2}} V+\frac{2 m r^{2}}{\hbar^{2}} E\right]=l(l+1)$
$\frac{d^{2} u}{d r^{2}}+\left[-\frac{2 m}{\hbar^{2}} V+\frac{2 m}{\hbar^{2}} E-\frac{l(l+1)}{r^{2}}\right] u=0$
For the ground state $n=0 ; l=0$ so the radial equation reduces to:
$\frac{d^{2} u}{d r^{2}}+\left[\frac{2 m}{\hbar^{2}} E\right] u=0$ where the potential $V=0$ inside of the sphere.

$$
\begin{aligned}
& \frac{d^{2} u}{d r^{2}}=-\frac{2 m E}{\hbar^{2}} u \rightarrow \frac{d^{2} u}{d r^{2}}=-k^{2} u \\
& \rightarrow u=u(r)=r R(r)=r\left(A J_{l}(k r)+B N_{l}(k r)\right) \\
& R(r)=\frac{u}{r}=A J_{l}(k r)+B N_{l}(k r)=A \frac{\sin (k r)}{k r}-B \frac{\cos (k r)}{k r}
\end{aligned}
$$

Using the fact that as $r \rightarrow 0$ the solutions need to be finite, let $B=0$. Therefore, $R(r)=A \frac{\sin (k r)}{k r}$. Normalizing the solution we have:
$\int_{0}^{\infty}|R(r)|^{2} d r=\frac{A^{2}}{k^{2}} \int_{0}^{\infty} \frac{\sin ^{2}(k r)}{r^{2}} d r=\frac{A^{2}}{k^{2}} \frac{k \pi}{2}=1 \rightarrow A=\sqrt{\frac{2 k}{\pi}}$. Thus $R(r)=\sqrt{\frac{2 k}{\pi}} \frac{\sin (k r)}{k r}$.
Lastly to form the ground state wave function we join the two solutions:
$\psi_{n, l}=\psi_{0,0}=R(r) Y_{0}^{0}(\theta, \phi)=\sqrt{\frac{2 k}{\pi}} \frac{\sin (k r)}{k r} Y_{0}^{0}(\theta, \phi)$
b. What is the ground state energy?

From part a,
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}=E u \rightarrow \frac{d^{2} u}{d r^{2}}=-\frac{2 m E}{\hbar^{2}} u \rightarrow u=\frac{A}{k} \sin (k r)-\frac{B}{k} \cos (k r)$
$k^{2}=\frac{2 m E}{\hbar^{2}}$

Applying the condition that at $r=0, u=0=A \sin (0)+B \cos (0)$, we have $B=0$.
Therefore $u=\frac{A}{k} \sin (k r)$ and at $r=a, u=0=\frac{A}{k} \sin (k a) \rightarrow k a=n \pi$.

Thus $k^{2}=\frac{2 m E}{\hbar^{2}}=\frac{n^{2} \pi^{2}}{a^{2}} \rightarrow E=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m a^{2}}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}$ for $n=1$ the ground state.
2. A particle of mass m is incident from the left along the x -axis and strikes a deltafunction potential barrier $V(x)=V_{0} \delta(x)$ where is a constant V_{0}.
a. When the particle obeys the Schrödinger equation the wave function $\psi(x)$ to the right of the barrier (for $x>0$) is connected at with the wave function $\psi(x)$ to the left of the barrier (for $x<0$). Show that the left and right wave functions satisfy the following relation $\lim _{\varepsilon \rightarrow 0}\left[\left(\frac{d \psi(x)}{d x}\right)_{x=-\varepsilon}-\left(\frac{d \psi(x)}{d x}\right)_{x=+\varepsilon}\right]=2 q^{2} \psi(0)$ and determine the value of q^{2}.

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi \\
& \lim _{\varepsilon \rightarrow 0}\left[\int_{-\varepsilon}^{\varepsilon} \frac{d^{2} \psi}{d x^{2}} d x\right]-\frac{2 m}{\hbar^{2}} \lim _{\varepsilon \rightarrow 0}\left[\int_{-\varepsilon}^{\varepsilon} V \psi d x\right]=-\frac{2 m}{\hbar^{2}} \lim _{\varepsilon \rightarrow 0}\left[\int_{-\varepsilon}^{\varepsilon} E \psi d x\right] \\
& \lim _{\varepsilon \rightarrow 0}\left[\left.\frac{d \psi}{d x}\right|_{-\varepsilon} ^{\varepsilon}\right]-\frac{2 m}{\hbar^{2}} \lim _{\varepsilon \rightarrow 0}\left[\int_{-\varepsilon}^{\varepsilon} V_{0} \delta(x) \psi d x\right]=-\frac{2 m E}{\hbar^{2}} \lim _{\varepsilon \rightarrow 0}\left[\int_{-\varepsilon}^{\varepsilon} \psi d x\right]=0 \\
& \lim _{\varepsilon \rightarrow 0}\left[\left(\frac{d \psi(x)}{d x}\right)_{x=-\varepsilon}-\left(\frac{d \psi(x)}{d x}\right)_{x=+\varepsilon}\right]=\frac{2 m V_{0}}{\hbar^{2}} \psi(0)=2 q^{2} \psi(0) \\
& \therefore q^{2}=\frac{m V_{0}}{\hbar^{2}}
\end{aligned}
$$

b. Suppose that the wave function of the particle having energy E is given by $e^{i k x}$ where $k=\sqrt{\frac{2 m E}{\hbar^{2}}}$. Determine the reflection and transmission coefficients (R and T) as functions of q and k. Explicitly determine R and T and show that $R+T=1$. Do not use $T=1-R$ or $R=1-T$.
$x<0, E>0$
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \rightarrow \frac{d^{2} \psi}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi=-k^{2} \psi \rightarrow \psi=A e^{i k x}+B e^{-i k x}$
$x>0, E>0$
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \rightarrow \frac{d^{2} \psi}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi=-k^{2} \psi \rightarrow \psi=C e^{i k x}+D e^{-i k x}$
Here, $D=0$ as there is nothing to reflect the waves back as $x \rightarrow \infty$. Now we apply the boundary conditions that the wave function has to be continuous at $x=0$ which gives $\psi(0)=A+B=C$. Now using the results from part a for the discontinuous derivative:

$$
\begin{aligned}
& \left(\frac{d \psi(x)}{d x}\right)_{x=-0}=i k A-i k B \\
& \left(\frac{d \psi(x)}{d x}\right)_{x=+0}=i k C \\
& \lim _{\varepsilon \rightarrow 0}\left[\left(\frac{d \psi(x)}{d x}\right)_{x=-\varepsilon}-\left(\frac{d \psi(x)}{d x}\right)_{x=+\varepsilon}\right]=i k C-(i k A-i k B)=2 q^{2} \psi(0)=2 q^{2}(A+B) \\
& \therefore i k(A-B-C)=i k(A-B-(A+B))=2 q^{2}(A+B) \\
& -2 i k B=2 q^{2} A+2 q^{2} B \rightarrow B=-\frac{q^{2}}{i k+q^{2}} A \\
& R=\frac{B^{*}}{A^{*}} \frac{B}{A}=\left(-\frac{q^{2}}{-i k+q^{2}}\right)\left(-\frac{q^{2}}{i k+q^{2}}\right)=\frac{q^{4}}{k^{2}+q^{4}}
\end{aligned}
$$

Now to calculate the transmission coefficient:

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0}\left[\left(\frac{d \psi(x)}{d x}\right)_{x=-\varepsilon}-\left(\frac{d \psi(x)}{d x}\right)_{x=+\varepsilon}\right]=i k C-(i k A-i k B)=2 q^{2} \psi(0)=2 q^{2}(C) \\
& \therefore i k(A-(C-A)-C)=i k(2 A-2 C)=2 q^{2}(C) \\
& 2 i k A-2 i k C=2 q^{2} C \rightarrow C=\frac{i k}{i k+q^{2}} A \\
& T=\frac{C^{*}}{A^{*}} \frac{C}{A}=\left(\frac{-i k}{-i k+q^{2}}\right)\left(\frac{i k}{i k+q^{2}}\right)=\frac{k^{2}}{k^{2}+q^{4}} \rightarrow T+R=\frac{k^{2}}{k^{2}+q^{4}}+\frac{q^{4}}{k^{2}+q^{4}}=1
\end{aligned}
$$

Physics 220 Equations

Useful Integrals:
$\int x^{n} d x=\frac{x^{n+1}}{n+1}$
$\int \sin x d x=-\cos x$
$\int \cos x d x=\sin x$
$\int_{0}^{\infty} \frac{\sin ^{2}(m x)}{x^{2}} d x=\frac{m \pi}{2}$
$\int e^{a x} d x=\frac{e^{x}}{a}$
$\int_{-\infty}^{\infty} e^{a x^{2}} d x=\left(\frac{a}{\pi}\right)^{\frac{1}{4}}$
$\int_{-\infty}^{\infty} x e^{a x^{2}} d x=0$
$\int_{-\infty}^{\infty} x^{2} e^{a x^{2}} d x=\frac{\sqrt{\pi}}{2 a^{\frac{3}{2}}}$
$\oint^{\infty} \operatorname{con}^{2} \sin ^{-\frac{x}{a}} d f s=\frac{a^{3}}{4}$
${ }^{-\infty}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{k g^{2}}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$\sigma=5.67 \times 10^{-8}$
$k_{B}=1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$h=6.63 \times 10^{-34} \mathrm{Js}$;
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=0.511 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=938 \frac{\mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=939 \frac{\mathrm{MeV}}{\mathrm{c}^{2}}$
$m_{E}=6 \times 10^{24} \mathrm{~kg}$
$R_{E}=6.4 \times 10^{6} \mathrm{~m}$

Formulas:
$c=f \lambda$
$E=h f=\frac{h c}{\lambda}$
$\frac{d S}{d \lambda}=\frac{2 \pi h c^{2}}{\lambda^{5}}\left[\frac{1}{e^{\frac{h c}{\lambda k T}}-1}\right]$
$\frac{d S}{d \lambda}=\frac{2 \pi c k T}{\lambda^{4}}$
$\lambda_{\text {max }}=\frac{2.9 \times 10^{-3} m \cdot K}{T}$
$S=\sigma T^{4}$
$e V_{\text {stop }}=h f-\phi$
$\lambda^{\prime}=\lambda+\frac{h}{m c}(1-\cos \phi)$
$\hbar=\frac{h}{2 \pi} ; k=\frac{2 \pi}{\lambda} ; \omega=2 \pi f$
$-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=i \hbar \frac{\partial \psi}{\partial t}=E \psi$
$\hat{E}=i \hbar \frac{\partial}{\partial t}$
$\hat{p}=-i \hbar \frac{\partial}{d x}$
$\hat{T}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}$
$\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V$
$\hat{x}=x$
$\langle O\rangle=\int \psi^{*} \hat{O} \psi d r$
$P=\int \psi^{*} \psi d r$
$\hat{H}|\psi\rangle=E|\psi\rangle$

