Name
Physics 110 Quiz \#1, April 5, 2013
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

Suppose that an object is moving in a straight line along the positive x -axis. The velocity of the object as a function of time is shown below.

1. Over the time interval $0 s \leq t \leq 5 s$, the acceleration of the object is
a. positive and increasing with time.
b. positive and constant in time.
c. negative and decreasing in time.
d. negative and constant in time.
2. Over the interval of time between $5 s \leq t \leq 10 s$, the object is displaced by an amount
a. $0 m$ in the positive x -direction.
b. 50 m in the positive x -direction.
c. 100 m in the positive x -direction.
d. 100 m in the negative x -direction
3. Suppose that over the interval of time $10 s \leq t \leq 20 s$, the object needs to be brought to rest. What is the least constant acceleration that will bring the object to rest over this time interval?

From the information in the problem and from the graph we have, $v_{f x}=v_{i x}+a_{x t} \rightarrow 0=20 \frac{m}{s}+a_{x}(10 s) \rightarrow a_{x}=-2 \frac{m}{s^{2}}$, or $2 \frac{m}{s^{2}}$ in the negative x-direction.
4. What is the displacement of the object over the time interval $10 s \leq t \leq 20 s$?

The displacement is given by (assuming that the initial position of the object at $t=10 s$ is $\left.x_{i}=0 m\right) x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}=\left(20 \frac{m}{s}\right)(10 s)+\frac{1}{2}\left(-2 \frac{m}{s^{2}}\right)(10 s)^{2}=100 m$
5. What is the displacement of the object over the entire time interval $0 s \leq t \leq 20 s$?

Assuming the initial position is $x_{i 1}=0 m$, the displacement over the first interval is $\bar{v}_{1}=\frac{\Delta x_{1}}{\Delta t_{1}} \rightarrow \Delta x_{1}=\bar{v}_{1} \Delta t_{1}=\left(\frac{0 \frac{m}{s}+20 \frac{m}{s}}{2}\right)(5 s)=50 \mathrm{~m}$. The displacement over the second interval is $\bar{v}_{2}=\frac{\Delta x_{2}}{\Delta t_{2}} \rightarrow \Delta x_{2}=\bar{v}_{2} \Delta t_{2}=\left(20 \frac{m}{s}\right)(5 \mathrm{~s})=100 \mathrm{~m}$. The displacement over the third time interval is 100 m from part 4. The net displacement is the sum of each of these displacements and is 250 m .

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or \mathbf{z}-directions
$r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2}$
$v_{f r}=v_{0 r}+a_{r} t$
$v_{f r}{ }^{2}=v_{0 r}{ }^{2}+2 a_{r} \Delta r$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r} \quad \begin{array}{llc}\text { Circles } & \text { Triangles } & \text { Spheres } \\ C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ A=\pi r^{2} & & V=\frac{4}{3} \pi r^{3}\end{array}$
$v=\frac{2 \pi r}{T} \quad$ Quadratic equation : $a x^{2}+b x+c=0$,
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad$ whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vectors
Useful Constants
magnitude of a vector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
directionof avector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$
,

Work/Energy
$K_{t}=\frac{1}{2} m v^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{\text {net }}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }}$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2}} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4}
\end{aligned} v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s} .
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$

Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

Simple Harmonic Motion/Waves

$$
\omega=2 \pi f=\frac{2 \pi}{T}
$$

$$
T_{S}=2 \pi \sqrt{\frac{m}{k}}
$$

$$
T_{P}=2 \pi \sqrt{\frac{l}{g}}
$$

$$
v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
$$

$$
x(t)=A \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

