Name \qquad
Physics 110 Quiz \#4, May 3, 2013
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A small mass m slides down a frictionless ramp starting from rest at a point A which is located a height H above the ground as shown below. When the mass reaches point B, located a height h above the ground, it enters a region (between points B and C) where the coefficient of friction is $\mu_{k}=0.5$.

1. Using energy methods, what is the speed of the block at point B ?

$$
\begin{aligned}
& \Delta E=0=\Delta K E+\Delta U_{g}+\Delta U_{s}=\left(\frac{1}{2} m v_{B}^{2}-0\right)+\left(m g y_{B}-m g y_{A}\right) \\
& v_{B}=\sqrt{2 g\left(y_{A}-y_{B}\right)}=\sqrt{2 g(H-h)}
\end{aligned}
$$

2. When the block enters the region between points B and C, friction brings the block to rest. How much work did the frictional force do bringing the block to rest?

$$
W_{f r}=\Delta K E=\left(0-\frac{1}{2} m v_{B}^{2}\right)=-\frac{1}{2} m v_{B}^{2}=-m g(H-h)
$$

3. What is the distance traveled by the block between points B (where the block enters the region of friction) and C (where it comes to rest due to friction)?

$$
\begin{aligned}
& W_{f r}=\left|F_{f r}\right| \times|\Delta x| \times \cos \theta=-F_{f r} x=\Delta K E=-m g(H-h) \\
& x=\frac{m g(H-h)}{F_{f r}}=\frac{m g(H-h)}{\mu_{k} m g}=\frac{(H-h)}{\mu_{k}}
\end{aligned}
$$

4. Suppose instead that at point A, the block were given an initial speed of v_{A} vertically downward. What is the change in distance traveled by the block between points B and C ?

$$
\begin{aligned}
& \Delta E=0=\Delta K E+\Delta U_{g}+\Delta U_{s}=\left(\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}\right)+\left(m g y_{B}-m g y_{A}\right) \\
& v_{B}=\sqrt{v_{A}^{2}+2 g\left(y_{A}-y_{B}\right)}=\sqrt{v_{A}^{2}+2 g(H-h)} \\
& W_{f r}=\Delta K E=\left(0-\frac{1}{2} m v_{B}^{2}\right)=-\frac{1}{2} m v_{B}^{2}=-\left(\frac{1}{2} m v_{A}^{2}+m g(H-h)\right) \\
& W_{f r r}=\left|F_{f r}\right| \times|\Delta x| \times \cos \theta=-F_{f r} x=\Delta K E=-\left(\frac{1}{2} m v_{A}^{2}+m g(H-h)\right) \\
& x_{\text {new }}=\frac{\frac{1}{2} m v_{A}^{2}+m g(H-h)}{F_{f r}}=\frac{\frac{1}{2} m v_{A}^{2}+m g(H-h)}{\mu_{k} m g}=\frac{\frac{1}{2} v_{A}^{2}+g(H-h)}{\mu_{k} g} \\
& \Delta x=x_{\text {new }}-x_{\text {old }}=\frac{\frac{1}{2} v_{A}^{2}+g(H-h)}{\mu_{k} g}-\frac{g(H-h)}{\mu_{k} g}=\frac{v_{A}^{2}}{2 \mu_{k} g}
\end{aligned}
$$

5. Suppose instead that at point A, the block were given an initial speed this time that was v_{A} vertically upward. Compared to the change in distance traveled by the block between points B and C when its initial velocity was vertically downward (call this distance $\Delta x_{v_{A}, \text { down }}$) the distance traveled when its initial velocity is directed vertically upward (call this distance $\Delta x_{v_{A}, u p}$) follows the relation
a. $\Delta x_{v_{A}, u p}>\Delta x_{v_{A}, \text { down }}$.
(b.) $\Delta x_{v_{A}, u p}=\Delta x_{v_{A}, \text { down }}$. (See problem 4 above)
c. $\Delta x_{v_{A}, u p}<\Delta x_{v_{A}, \text { down }}$.
d. There is not enough information given in order to solve this problem

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or z -directions

$$
\begin{aligned}
& r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r}=v_{0 r}+a_{r} t \\
& v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$\begin{array}{cccc}r & \text { Circles } & \text { Triangles } & \text { Spheres } \\ F_{r}=m a_{r}=m \frac{v^{2}}{r} & \begin{array}{c}\text { Cle } \\ \\ \\ \\ \\ A=\pi r\end{array} & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ & & V=\frac{4}{3} \pi r^{3}\end{array}$
$v=\frac{2 \pi r}{T} \quad$ Quadratic equation : $a x^{2}+b x+c=0$,
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad$ whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Vectors
Useful Constants
magnitude of avector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$ Work/Energy
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$N_{A}=6.02 \times 10^{23}$ atoms $/$ mole $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$

$$
K_{t}=\frac{1}{2} m v^{2}
$$

$$
K_{r}=\frac{1}{2} I \omega^{2}
$$

$$
U_{g}=m g h
$$

$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

$$
U_{S}=\frac{1}{2} k x^{2}
$$

$$
W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}
$$

$$
W_{R}=\tau \theta=\Delta E_{R}
$$

$$
W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0
$$

$$
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }}
$$

$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}={ }_{5}^{9} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$
Rotational Motion
Motion/Waves
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$

Fluids

$$
\begin{aligned}
& \rho=\frac{M}{V} \\
& P=\frac{F}{A} \\
& P_{d}=P_{0}+\rho g d \\
& F_{B}=\rho g V \\
& A_{1} v_{1}=A_{2} v_{2} \\
& \rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2} \\
& P+1 n n^{2}+\cap \pi h=P+1 n n^{2},+n \pi h
\end{aligned}
$$

Simple Harmonic

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}} \\
& x(t)=A \sin \left(\frac{2 \pi}{T}\right)
\end{aligned}
$$

Sound
$v=f \lambda=(331+0.6 T) \frac{\mathrm{m}}{\mathrm{s}}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

