Name \qquad
Physics 110 Quiz \#6, May 24, 2013
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

The Union College Physics Department has decided to hang a sign outside of the department office so that all passers by can read how much fun physics can be. Suppose that the sign (with a mass $m_{\text {sign }}=220 \mathrm{~kg}$) is suspended by a massless wire from a uniform blue $\operatorname{rod}\left(m_{\text {rod }}=110 \mathrm{~kg}\right.$ and $L=2 \mathrm{~m}$) and that the blue rod makes an angle of $\theta=30^{\circ}$ with respect to the vertical as shown below. The blue rod is attached to the wall by a horizontal massless support wire. The sign acts like a point mass ($I_{\text {sign }}=m_{\text {sign }} R^{2}$) and the blue rod is pivoted about one end ($I_{r o d}=\frac{1}{3} m_{r o d} R^{2}$)

a. Draw the reminder of the free-body diagram, by labeling the rest of the forces. The reaction force, F_{R}, of the pivot is given in the diagram. Then write down Newton's $2^{\text {nd }}$ law in the horizontal and vertical directions and determine the tension in the horizontal support wire.

$$
\begin{aligned}
& \sum F_{x}: \quad F_{R} \sin \theta-F_{T}=0 \rightarrow F_{T}=F_{R} \sin \theta=3734.3 \mathrm{~N} \sin 30=1867.2 \mathrm{~N} \\
& \sum F_{y}: \quad F_{R} \cos \theta-m_{\text {rod }} g-m_{\text {sign }} g=0 \rightarrow F_{R}=\frac{\left(m_{\text {rod }}+m_{\text {sign }}\right) g}{\cos \theta}=\frac{\left(330 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}{\cos 30}=3734.3 \mathrm{~N}
\end{aligned}
$$

b. Write the expression for the sum of the torques about the pivot by choosing clockwise rotations as the positive direction for torque.
$\sum \tau: \quad m_{\text {rod }} g \frac{L}{2} \sin \theta+m_{\text {sign }} g L \sin \theta-F_{T} R \sin (90-\theta)=0$
c. How far from the pivot is the horizontal wire attached to the blue rod?
$m_{\text {rod }} g \frac{L}{2} \sin \theta+m_{\text {sigg }} g L \sin \theta-F_{T} R \sin (90-\theta)=0$
$\left(110 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1 \mathrm{~m} \times \sin 30\right)+\left(220 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 2 \mathrm{~m} \times \sin 30\right)-1867.2 N(R) \sin 60=0$
$R=1.67 \mathrm{~m}$
d. Suppose that the cable snaps and the system rotates about the pivot. What is the initial angular acceleration of the system about the pivot?

$$
\begin{aligned}
& \sum \tau: \quad m_{\text {rod }} g \frac{L}{2} \sin \theta+m_{\text {sign }} g L \sin \theta=I \alpha=\left(\frac{1}{3} m_{\text {rod }} L^{2}+m_{\text {sigg }} L^{2}\right) \alpha \\
& \alpha=\frac{m_{\text {rod }} g \frac{L}{2} \sin \theta+m_{\text {sigg }} g L \sin \theta}{\left(\frac{1}{3} m_{\text {rod }} L^{2}+m_{\text {sign }} L^{2}\right)}=\frac{\left(\frac{110 \mathrm{~kg}}{2}+220 \mathrm{~kg}\right) \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 2 \mathrm{~m} \times \sin 30}{\left(\frac{110 \mathrm{~kg}}{3}+220 \mathrm{~kg}\right) \times 4 \mathrm{~m}^{2}}=2.63 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
\end{aligned}
$$

e. If the blue rod rotates from the initial angle of $\theta_{i}=30^{\circ}$ to $\theta_{f}=90^{\circ}$, work is done on the system. The torque is not constant, but changes with angle, and as the blue rod rotates through the 60° angle 3500 J of work is done. If the system starts from rest, what is the angular velocity of the boom as it passes through the horizontal?

$$
W_{R}=\Delta K E_{R}=\frac{1}{2} I \omega_{f}^{2} \rightarrow \omega_{f}=\sqrt{\frac{2 W_{R}}{\left(\frac{m_{\text {rod }}}{3}+m_{\text {sign }}\right) L^{2}}}=\sqrt{\frac{2 \times 3500 J}{\left(\frac{110 \mathrm{~kg}}{3}+220 \mathrm{~kg}\right) 4 m^{2}}}=2.6 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or \mathbf{z}-directions

$$
\begin{aligned}
& r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r}=v_{0 r}+a_{r} t \\
& v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$\begin{array}{cccc}r & \text { Circles } & \text { Triangles } & \text { Spheres } \\ F_{r}=m a_{r}=m \frac{v^{2}}{r} & \begin{array}{c}\text { Cle } \\ \\ \\ \\ A=\pi r^{2}\end{array} & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ V=\frac{4}{3} \pi r^{3}\end{array}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$
Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Useful Constants
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$\nu=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Work/Energy Heat
$K_{t}=\frac{1}{2} m v^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{\text {net }}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$
Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$
Simple Harmonic Motion/Waves

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
x(t)=A \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$I=2 \pi^{2} f^{2} \rho v A^{2}$

