Name
Physics 120 Quiz \#5, May 11, 2007

1. A ball whose mass is 0.1 kg falls vertically and hits the floor with a speed of $6 \mathrm{~m} / \mathrm{s}$, then rebounds upward with a speed of $5 \mathrm{~m} / \mathrm{s}$.
a. What is the impulse (change in momentum) of the ball? (3)

$$
\vec{I}=\Delta \vec{p}=m \vec{v}_{f}-m \vec{v}_{i}=m\left(v_{f}-\left(-v_{i}\right)\right) \hat{j}=0.1 \mathrm{~kg} \times\left(6 \frac{\mathrm{~m}}{\mathrm{~s}}+5 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{j}=1.1 \frac{\mathrm{kgm}}{\mathrm{~s}} \hat{j}
$$

floor
floor
b. If the ball is in contact with the floor for $1 \mathrm{~ms}\left(1 \times 10^{-3} \mathrm{~s}\right)$, what was the force exerted on the ball by the floor? (3)

$$
\vec{I}=\Delta \vec{p}=\vec{F} \Delta t \rightarrow \vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\vec{I}}{\Delta t}=\frac{1.1 \frac{\mathrm{kgm}}{\mathrm{~s}}}{1 \times 10^{-3} \mathrm{~s}} \hat{j}=1100 \mathrm{~N} \hat{j}
$$

c. How much work was done on the ball by the floor? (2)

$$
W=\Delta K E=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2} \times 0.1 \mathrm{~kg} \times\left(\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(-6 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}\right)=-0.55 \mathrm{~J}
$$

The ball loses energy and the floor gains the energy lost by the ball as heat.
2. Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2. When a constant force is applied to object 1, it accelerates for a time interval $\Delta \mathrm{t}$. The force is removed and applied to object 2 . After object 2 has accelerated for the same time interval, $\Delta \mathrm{t}$, which of the following statements is true?
a. $p_{1}>p_{2}$
(b.) $p_{1}=p_{2}$.
c. $p_{1}<p_{2}$.
d. Not enough information given.

Useful formulas:

Motion in the \mathbf{x}, y or z -directions
$r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2}$
$v_{f r}=v_{i r}+a_{r} t$
$v_{f r}^{2}=v_{i r}^{2}+2 a_{r} \Delta r$

Vectors

magnitude of a vector $=\sqrt{v_{x}^{2}+v^{2} y}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{X}$
$F_{f}=\mu F_{N}$

Simple Harmonic Motion/Waves

Uniform Circular Motion

$$
\begin{aligned}
& a_{r}=\frac{v^{2}}{r} \\
& F_{r}=m a_{r}=m \\
& v=\frac{2 \pi r}{T} \\
& F_{G}=G \frac{m_{1} m_{2}}{r^{2}}
\end{aligned}
$$

Geometry /Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$

Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
F_{r}=m a_{r}=m \frac{v^{2}}{r} \quad \begin{array}{llll}
r & C i r c l e s & \text { Triangles } & \text { Spheres } \\
C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2}
\end{array}
$$

Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2}} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s} \quad P_{\text {air }}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Work/Energy	Rotational Motion
$K_{t}=\frac{1}{2} m v^{2}$	$\theta_{f}=\theta_{i}+\omega_{i} t \frac{1}{2} \alpha t^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$	$\omega_{f}=\omega_{i}+\alpha t$
$U_{g}=m g h$	$\omega_{f}{ }_{f}=\omega_{i}{ }_{i}+2 \alpha \Delta \theta$
$U_{S}=\frac{1}{2} k x^{2}$	$\tau=I \alpha=r F$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$	$L=I \omega$
$W_{R}=\tau \theta=\Delta E_{R}$	$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$	$a_{r}=r \omega^{2}$

$\omega=2 \pi f=\frac{2 \pi}{T}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$T_{P}=2 \pi \sqrt{\frac{l}{g}}$
$v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}$
$x(t)=A \sin \left(\frac{2 \pi t}{T}\right)$
$v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right)$
$a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)$
$v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}$
$f_{n}=n f_{1}=n \frac{v}{2 L}$
$P=\frac{1}{2} \omega^{2} \mu v A^{2}$

