Name
Physics 110 Quiz \#1, September 16, 2011
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. Suppose that you have the following position versus time graph for an object moving in one-dimension. The velocity of the object is best given as
a. increasing linearly with time.
b. decreasing linearly with time. c. constant in time.
d. unable to be determined.

2. Suppose that you are driving down the road at a constant velocity $v_{i x}$.
a. If you were driving at this constant rate and then you needed to apply the brakes and bring your car to rest. From the time you apply the brakes and your vehicle comes to rest, you cover a distance $d$. In terms of $v_{i x}$ and $d$, derive an expression for the breaking time of your car? (Note, here we are ignoring any reaction time this is purely bringing your car to rest.)

$$
x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2} \rightarrow d=v_{i} t-\frac{1}{2} a_{B x} t^{2} ; \& v_{f x}=v_{i x}+a_{x} t \rightarrow 0=v_{i}-a_{B x} t \Rightarrow a_{B x}=\frac{v_{i}}{t}
$$

So, $d=v_{i} t-\frac{1}{2} a_{B x} t^{2}=v_{i} t-\frac{1}{2} v_{i} t=\frac{v_{i} t}{2}$
$\therefore t=\frac{2 d}{v_{i}}$
b. If you are driving with a velocity of $v_{i x}=30 \mathrm{~m} / \mathrm{s}$ and you suddenly see a car 40 m ahead of you that has for some reason come to a complete stop. If you apply the brakes for $3.2 s$, do you hit the car in front of you? If you do hit the car in front of you, what time would you have needed to bring your car to rest so that you did not hit the car?
$d=\frac{v_{i} t}{2}=\frac{30 \frac{m}{s} \times 3.2 s}{2}=48 \mathrm{~m}$, so Yes you do hit the car. To avoid the car you would have had to stop in a time $t=\frac{2 d}{v_{i}}=\frac{2 \times 40 \mathrm{~m}}{30 \frac{\mathrm{~m}}{\mathrm{~s}}}=2.7 \mathrm{~s}$.

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathbf{y}$ or $\mathbf{z}$-directions

$$
\begin{aligned}
& r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r}=v_{0 r}+a_{r} t \\
& v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r} \quad \begin{array}{lcc}\text { Circles } & \text { Triangles } & \text { Spheres } \\ C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ A=\pi r^{2} & & V=\frac{4}{3} \pi r^{3}\end{array}$
$v=\frac{2 \pi r}{T} \quad \begin{array}{ll}A=\pi r & \text { Quadratic equation : } a x^{2}+b x+c=0,\end{array}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad$ whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Geometry /Algebra

Useful Constants
magnitude of avector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \mathrm{mole} \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / K \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4}
\end{aligned} v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{gathered}
\text { Work/Energy } \\
K_{t}=\frac{1}{2} m v^{2} \\
K_{r}=\frac{1}{2} I \omega^{2} \\
U_{g}=m g h \\
U_{S}=\frac{1}{2} k x^{2} \\
W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T} \\
W_{R}=\tau \theta=\Delta E_{R} \\
W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T} \\
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0 \\
\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{d i s s}
\end{gathered}
$$

Heat

$$
T_{C}=\frac{5}{9}\left[T_{F}-32\right]
$$

$$
T_{F}=\frac{9}{5} T_{C}+32
$$

$$
L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)
$$

$$
A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)
$$

$$
V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha
$$

$$
P V=N k_{B} T
$$

$$
\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}
$$

$$
\Delta Q=m c \Delta T
$$

$$
P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T
$$

$$
P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}
$$

$$
\Delta U=\Delta Q-\Delta W
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound


Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}} \\
& x(t)=A \sin \left(\frac{2 \pi}{T}\right) \\
& v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi}{T}\right) \\
& a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi}{T}\right) \\
& v=f \lambda=\sqrt{\frac{F_{T}}{\mu}} \\
& f_{n}=n f_{1}=n \frac{v}{2 L} \\
& I=2 \pi^{2} f^{2} \rho v A^{2}
\end{aligned}
$$

