Name \qquad
Physics 110 Quiz \#1, April 2, 2010
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

Suppose that you are given the position-time data and graph shown below.

1. In the graph above, the sign of the acceleration of the object is
a. positive.
b. negative.
zero.
d. unable to be determined from the information given.
2. Based on the table and graph above solve the following problems.
a. What are the displacements of the object during the time intervals $t_{0 \rightarrow 10}$ and $t_{40 \rightarrow 50}$?

$$
\begin{aligned}
& \Delta x_{0 \rightarrow 10}=285 m-15 m=270 m \\
& \Delta x_{40 \rightarrow 50}=365 m-495 m=-130 m
\end{aligned}
$$

b. What are the average velocities of the object during the time intervals $t_{10 \rightarrow 30}$ and $t_{20 \rightarrow 30}$?

$$
\begin{aligned}
& v_{10 \rightarrow 30}=\frac{\Delta x_{10 \rightarrow 30}}{\Delta t}=\frac{525 \mathrm{~m}-285 \mathrm{~m}}{20 \mathrm{~s}}=12 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{20 \rightarrow 30}=\frac{\Delta x_{20 \rightarrow 30}}{\Delta t}=\frac{525 \mathrm{~m}-455 \mathrm{~m}}{10 \mathrm{~s}}=7 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}$, \mathbf{y} or \mathbf{z}-directions
$r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2}$
$v_{f r}=v_{0 r}+a_{r} t$
$v_{f r}{ }^{2}=v_{0 r}{ }^{2}+2 a_{r} \Delta r$

Vectors
magnitude of a vector $=\sqrt{v_{x}^{2}+v^{2} y}$
directionof a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r} \quad \begin{array}{llc}\text { Circles } & \text { Triangles } & \text { Spheres } \\ C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ A=\pi r^{2} & & V=\frac{4}{\pi} \pi r^{3}\end{array}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry /Algebra

Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2}} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \mathrm{mole} \quad k_{B}=1.38 \times 10^{-23 \mathrm{~J} / \mathrm{K}} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Work/Energy
Heat
$K_{t}=\frac{1}{2} m v^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$U_{g}=m g h \quad L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\boldsymbol{\tau} \boldsymbol{\theta}=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta K E+\Delta U_{g}+\Delta U_{S}=0$
$\Delta K E+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$P_{1}+\frac{1}{2} \rho \nu^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

Simple Harmonic Motion/Waves
$\omega=2 \pi f=\frac{2 \pi}{T}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$T_{P}=2 \pi \sqrt{\frac{l}{g}}$
$v= \pm v_{\max }\left(\sqrt{1-\frac{x^{2}}{A^{2}}}\right)$
$\nu_{\text {max }}=\omega A$
$a_{\text {max }}=\omega^{2} A$
$v=f \lambda$
$v=\sqrt{\frac{F_{T}}{\mu}}$
$f_{n}=n f_{1}=n \frac{v}{2 L}$

