Name \qquad
Physics 110 Quiz \#2, September 23, 2011
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. A stone is thrown at an angle of 45° below the horizontal x-axis in the $+x$-direction. If air resistance is ignored, which of the velocity versus time graphs shown below best represents v_{x} versus t and v_{y} versus t, respectively?

	$\underline{v}_{x} \underline{v S t}$	
a.	IV	I
b.	III	II
c.	I	V
c.	II	III

2. Suppose that you won a contest in which you could win a fabulous prize if you can throw a basketball from the midpoint of the court (which is located 14 m from the hoop) through the hoop at the other end of the court. Suppose that you throw the basketball at an angle of 30° with respect to the floor and that the ball leaves your hand at a height of 2.1 m above the floor.
a. What initial speed (the magnitude of the velocity) would you have had to throw the basketball at so that you would make the shot, if the hoop is 3.05 m above the ground at the end of the court 14 m from you?

Taking the origin at the basketball, we have

$$
\begin{aligned}
& y_{f}=\left(v_{i} \sin \theta\right) t-\frac{g}{2} t^{2}=x_{f} \tan \theta-\frac{g x_{f}^{2}}{2 v_{i}^{2} \cos ^{2} \theta} ; \text { where } x_{f}=\left(v_{i} \cos \theta\right) t \\
& \therefore 0.95 m=14 m \tan 30-\frac{9.8 \frac{m}{s^{2}} \times(14 m)^{2}}{2 \cos ^{2} 30 v_{i}^{2}} \Rightarrow v_{i}=13.4 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

b. If you were to make the half court shot, what would the time of flight of the basketball have been from the time the ball left your hand until it went through the hoop at the end of the court?

$$
t=\frac{x_{f}}{v_{i} \cos \theta}=\frac{14 \mathrm{~m}}{13.4 \frac{m}{s} \cos 30}=1.21 \mathrm{~s}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or \mathbf{z}-directions

$$
\begin{aligned}
& r_{f}=r_{i}+v_{i r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r r}=v_{i r}+a_{r} t \\
& v_{f r r}^{2}=v_{i r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry /Algebra

$$
\begin{array}{lcc}
\text { Circles } & \text { Triangles } & \text { Spheres } \\
C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\
A=\pi r^{2} & & V=\frac{4}{3} \pi r^{3}
\end{array}
$$

Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
magnitude of a vector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
directionof avector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Work/Energy
$K_{t}=\frac{1}{2} m v^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{\text {net }}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$
Heat
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
x(t)=A \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4}
\end{aligned} v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s} .
$$

