Name \qquad
Physics 110 Quiz \#2, April 9, 2010
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. You are standing on top of a tall building and you throw an object vertically downward. Which of the following graphs shows the velocity of the object as a function of time?

2. Suppose that you are driving down a road at $24.4 \mathrm{~m} / \mathrm{s}(\sim 55 \mathrm{mph})$ and come to a onelane bridge. You decide to cross the bridge and at the instant you begin to cross, you notice a slow moving bus 100 m ahead of you traveling at a constant speed of $6.7 \mathrm{~m} / \mathrm{s}$ ($\sim 15 \mathrm{mph}$). You can’t leisurely slow down, so just as soon as you start down the bridge you apply the brakes to avoid a collision of your car and the bus and your car decelerates at a constant rate of $1 \mathrm{~m} / \mathrm{s}^{2}$.
a. What are the trajectories for the bus and for your car as functions of time?

$$
\begin{aligned}
& x_{f, b u s}=100+6.7 t \\
& x_{f, c a r}=24.4 t-0.5 t^{2}
\end{aligned}
$$

b. Do you collide with the bus? If so, when and where, with respect you the start of the bridge? (Hint: you will need to solve a quadratic equation involving time.)

$$
\begin{aligned}
& x_{f, \text { car }}=x_{f, b u s} \rightarrow 100+6.7 t=24.4 t-0.5 t^{2} \rightarrow 0.5 t^{2}-17.7+100=0 \rightarrow t=\left\{\begin{array}{c}
7.1 \mathrm{~s} \\
28.3 \mathrm{~s}
\end{array}\right\} \\
& x_{f, b u s}=100+6.7 t=100+6.7(7.1)=147.6 \mathrm{~m}
\end{aligned}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathrm{x}$, y or z -directions
$r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2}$
$v_{f r}=v_{0 r}+a_{r} t$
$v_{f r}{ }^{2}=v_{0 r}{ }^{2}+2 a_{r} \Delta r$

Vectors
magnitude of a vector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
directionof a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry /Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$

Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Useful Constants

Work/Energy

$$
\begin{aligned}
& K_{t}=\frac{1}{2} m v^{2} \\
& K_{r}=\frac{1}{2} I \omega^{2} \\
& U_{g}=m g h \\
& U_{S}=\frac{1}{2} k x^{2} \\
& W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T} \\
& W_{R}=\tau \theta=\Delta E_{R} \\
& W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T} \\
& \Delta K E+\Delta U_{g}+\Delta U_{S}=0 \\
& \Delta K E+\Delta U_{g}+\Delta U_{S}=-\Delta E_{d i s s}
\end{aligned}
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t \frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

Heat
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$

$$
P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T
$$

$$
P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}
$$

$$
\Delta U=\Delta Q-\Delta W
$$

Simple Harmonic Motion/Waves
$\omega=2 \pi f=\frac{2 \pi}{T}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$T_{P}=2 \pi \sqrt{\frac{l}{g}}$
$v= \pm v_{\max }\left(\sqrt{1-\frac{x^{2}}{A^{2}}}\right)$
$\nu_{\text {max }}=\omega A$
$a_{\text {max }}=\omega^{2} A$
$v=f \lambda$
$v=\sqrt{\frac{F_{T}}{\mu}}$
$f_{n}=n f_{1}=n \frac{v}{2 L}$

