Name \qquad
Physics 110 Quiz \#3, October 7, 2011
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. Consider a massless rigid rod with two balls, A and B attached. Ball A is attached to one end of the rod, while ball B is attached to the center of the rod. Each half of the rod has length L and the balls have identical masses, m. When the free end of the rod is spun in a horizontal circle ball A has a constant speed of v_{A} while ball B has a constant speed of v_{B}. Comparing the tension forces in the left and right halves of the rod, we have

a. the magnitude of the tension force in the left half of the rod is greater than the magnitude of the tension force in the right half of the rod.
b. the magnitudes of the tension force in the left and right halves of the rod are equal.
c. the magnitude of the tension force in the right half of the rod is greater than the magnitude of the tension force in the left half of the rod.
d. no way of determining the tension forces in the rod.
2. Suppose that you are given the setup of blocks shown below. M_{l} has a mass of 2 kg while M_{2} has a mass of 3 kg .
a. What is the magnitude of the acceleration of M_{l} ?

Assuming that M_{1} rises and M_{2} falls, we have
Mass \#1: $F_{T}-M_{1} g=M_{1} a$
Mass \#2: $F_{T}-M_{2} g=-M_{2} a$
$\therefore a=\left(\frac{M_{2}-M_{1}}{M_{1}+M_{2}}\right) g=\left(\frac{3-2}{3+2}\right) g=\frac{g}{5}=1.96 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

b. What is the magnitude of the tension force in the rope?
$F_{T}=M_{2}(g-a)=\frac{4 M_{2} g}{5}=\frac{4 \times 3 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{5}=23.5 \mathrm{~N}$
or, alternatively $F_{T}=M_{1}(g+a)=\frac{6 M_{1} g}{5}=\frac{6 \times 2 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{5}=23.5 \mathrm{~N}$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or \mathbf{z}-directions

$$
\begin{aligned}
& r_{f}=r_{i}+v_{i r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r r}=v_{i r}+a_{r} t \\
& v_{f r r}^{2}=v_{i r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry /Algebra

$$
\begin{array}{lcc}
\text { Circles } & \text { Triangles } & \text { Spheres } \\
C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\
A=\pi r^{2} & & V=\frac{4}{3} \pi r^{3}
\end{array}
$$

Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
magnitude of a vector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
directionof avector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Work/Energy
$K_{t}=\frac{1}{2} m v^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{\text {net }}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }} \quad P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$
Heat
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$

Simple Harmonic Motion/Waves

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
x(t)=A \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4}
\end{aligned} v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s} .
$$

