Name \qquad
Physics 110 Quiz \#3, April 21, 2010
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. A block of mass m is placed on a plane inclined at an angle of θ above the horizontal. The block is attached to the top of the incline by a rope as shown in the diagram below. The magnitude of the tension force exerted by the wall (where the rope is connected) on the rope is
(b. $\begin{aligned} & F_{T}=m g \cos \theta \\ & F_{T}=m g \sin \theta \\ & F_{T}=0\end{aligned}$
d. $\quad F_{T}=m g$

2. An air puck of mass 0.250 kg is tied to a string and allowed to revolve in a circle of radius 1.00 m on a frictionless horizontal table as shown below. The other end of the string passes through a hole in the center of the table and a mass of 1.00 kg is attached to it. The suspended mass remains in equilibrium while the puck on the tabletop revolves.
a. What is the tension in the string?

Puck: $\quad \sum F_{\text {horizonal }}: \quad F_{T}=\frac{m_{p} v^{2}}{r}$
Hanging Mass: $\sum F_{\text {verical }}: \quad F_{T}-m_{H} g=m_{H} a=0 \rightarrow F_{T}=m_{H} g=1 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=9.8 \mathrm{~N}$
b. What is the speed of the puck?

$$
F_{T}=9.8 N=\frac{m_{p} v^{2}}{r} \rightarrow v=\sqrt{\frac{F_{T} r}{m_{p}}}=\sqrt{\frac{9.8 N \times 1 m}{0.25 m}}=6.3 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Useful formulas:

Motion in the $\mathrm{r}=\mathrm{x}, \mathrm{y}$ or z -directions

$$
\begin{aligned}
& r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r}=v_{0 r}+a_{r} t \\
& v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r} \quad \begin{array}{llc}\text { Circles } & \text { Triangles } & \text { Spheres } \\ C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ A=\pi r^{2} & & V=\frac{4}{3} \pi r^{3}\end{array}$
$v=\frac{2 \pi r}{T} \quad$ Quadratic equation : $a x^{2}+b x+c=0$,
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad$ whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Vectors
magnitude of a vector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
directionof a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Useful Constants

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\vec{p}=m \vec{v}$
Work/Energy
Heat
$K_{t}=\frac{1}{2} m v^{2}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$K_{r}=\frac{1}{2} I \omega^{2}$
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$

Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$
Simple Harmonic Motion/Waves
$\omega=2 \pi f=\frac{2 \pi}{T}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$T_{P}=2 \pi \sqrt{\frac{l}{g}}$
$v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}$
$x(t)=A \sin \left(\frac{2 \pi t}{T}\right)$
$v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi t}{T}\right)$
$a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi t}{T}\right)$
$v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}$
$f_{n}=n f_{1}=n \frac{v}{2 L}$
$I=2 \pi^{2} f^{2} \rho v A^{2}$

