Name
Physics 110 Quiz \#4, October 21, 2011
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. Super spy James Bond find himself caught in a trap set by SPECTRE in which Bond finds himself at the center of a railway car that has been placed at the edge of a cliff. Which way should Bond walk to minimize the danger of falling off of the edge of the cliff?

a. To the left.
b. To the right.
c. There is no way to minimize the danger.
d. Philosophically speaking, the only way to minimize danger was to never put your self in a dangerous situation.
2. An 80 kg person is on a ladder hanging from a balloon that has a total mass (including the basket and passenger in the basket) of 320 kg . Suppose that the balloon is initially stationary relative to the ground (meaning that the balloon is neither rising or falling vertically, nor is it moving horizontally across the ground.) The person on the ladder decides to start climbing and begins to climb at $2.5 \mathrm{~m} / \mathrm{s}$
a. In what direction does the balloon move? Justify your answer.

Since the initial momentum is zero and in order to conserve momentum, if the person climbs up then the balloon moves down. This is shown below in part b also.

b. With what speed does the balloon move?

$$
\begin{aligned}
& p_{i y}=p_{f y} \\
& 0=m_{p} v_{p}+m_{B} v_{B} \\
& v_{B}=-\frac{m_{p}}{m_{B}} v_{p}=-\frac{80 \mathrm{~kg}}{320 \mathrm{~kg}} \times 2.5 \frac{\mathrm{~m}}{\mathrm{~s}}=-0.63 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

or the balloon moves down (the negative sign) at $0.63 \mathrm{~m} / \mathrm{s}$.
c. If the person on the ladder stops climbing, what is the speed of the balloon?

Using the expression in part b , if the person stops, so too does the balloon.

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or z -directions

$$
\begin{aligned}
& r_{f}=r_{i}+v_{i r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r r}=v_{i r}+a_{r} t \\
& v_{f r r}^{2}=v_{i r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$\begin{array}{clcc}r & \text { Circles } & \text { Triangles } & \text { Spheres } \\ F_{r}=m a_{r}=m \frac{v^{2}}{r} & C=2 \pi r & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ A=\pi r^{2} & & V=\frac{4}{3} \pi r^{3}\end{array}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry/Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h \quad A=4 \pi r^{2}$	
$A=\pi r^{2}$	$V=\frac{4}{3} \pi r^{3}$	
Quadratic equation : $a x^{2}+b x+c=0$,		
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$		

magnitude of avector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of avector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
Work/Energy
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$
$K_{t}=\frac{1}{2} m v^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{\text {net }}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$N_{A}=6.02 \times 10^{23}$ atoms $/$ mole $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$

