Name \qquad
Physics 110 Quiz \#4, April 30, 2010
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. A mass m is dropped from rest from a height y acquiring a speed $v_{m a x}$. A second identical mass is dropped from rest at a height $y / 4$ acquiring a speed v. Of the following, which is true?
a. $v=\frac{v_{\text {max }}}{2}$
b. $v=\frac{v_{\text {max }}}{\sqrt{2}}$
c. $K E=\frac{K E_{\max }}{16}$
d. $v=2 v_{\text {max }}$
2. Suppose that you are given the system of masses shown on the right in which $m_{1}=$ $1 \mathrm{~kg}, m_{2}=3 \mathrm{~kg}, \theta=42^{\circ}, \mu_{k}=0.35$ and $k=$ $40 \mathrm{~N} / \mathrm{m}$.

a. Using energy ideas, what is the maximum extension of the spring if the surfaces are considered frictionless and the blocks are released from rest?
$\Delta U_{g_{1}}+\Delta U_{g_{2}}+\Delta U_{S}+\Delta K E_{1}+\Delta K E_{2}=\Delta E_{\text {Total }}=0$
$0+\left(m_{2} g y_{f}-m_{2} g y_{i}\right)+\left(\frac{1}{2} k x_{\text {max }}^{2}-0\right)+0+0=0$
$-m_{2} g x_{\text {max }} \sin \theta+\frac{1}{2} k x_{\text {max }}^{2}=0$
$x_{\text {max }}=\frac{2 m_{2} g \sin \theta}{k}=\frac{2 \times 3 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \sin 42}{40 \frac{\mathrm{~N}}{\mathrm{~m}}}=0.98 \mathrm{~m}$
b. Using energy ideas, what is the maximum extension of the spring if the surfaces are now considered to not be frictionless and the blocks are released from rest?

$$
\begin{aligned}
& \Delta U_{g_{1}}+\Delta U_{g 2}+\Delta U_{S}+\Delta K E_{1}+\Delta K E_{2}=\Delta E_{\text {Total }}=-F_{f_{1}} x_{\max }^{\prime}-F_{f_{r_{2}}} x_{\max }^{\prime} \\
& \left(m_{2} g y_{f}-m_{2} g y_{i}\right)+\left(\frac{1}{2} k\left(x_{\max }^{\prime}\right)^{2}-0\right)=-\mu_{K} m_{1} g x_{\max }^{\prime}-\mu_{K} m_{2} g \cos \theta x_{\max }^{\prime} \\
& -m_{2} g x_{\max }^{\prime} \sin \theta+\frac{1}{2} k\left(x_{\max }^{\prime}\right)^{2}=-\mu_{K} m_{1} g x_{\max }^{\prime}-\mu_{K} m_{2} g \cos \theta x_{\max }^{\prime} \\
& x_{\max }^{\prime}=\frac{2 m_{2} g \sin \theta}{k}-\frac{2 \mu_{K} g}{k}\left(m_{1}+m_{2} \cos \theta\right)=0.54 m
\end{aligned}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or z -directions
$r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2}$
$v_{f r}=v_{0 r}+a_{r} t$
$v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$\begin{array}{lllc}r & \text { Circles } & \text { Triangles } & \text { Spheres } \\ F_{r}=m a_{r}=m \frac{v^{2}}{r} & \begin{array}{l}C=2 \pi r \\ A=\pi r^{2}\end{array} & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ v=\frac{2 \pi r}{T} & & V=\frac{4}{3} \pi r^{3} \\ \text { Quadratic equation }: a x^{2}+b x+c=0,\end{array}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad$ whose solutions are given by $: x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Geometry/Algebra

Useful Constants
magnitude of avector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$
Linear Momentum/Forces
Work/Energy
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$N_{A}=6.02 \times 10^{23} \mathrm{atoms} /$ mole $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }}$
$K_{t}=\frac{1}{2} m v^{2}$

Heat
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho \nu^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho \nu^{2}{ }_{2}+\rho g h_{2}$
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$
Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound

Simple Harmonic Motion/Waves

$$
\omega=2 \pi f=\frac{2 \pi}{T}
$$

$$
\begin{aligned}
& P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4} \\
& \Delta U=\Delta Q-\Delta W
\end{aligned}
$$

$$
T_{S}=2 \pi \sqrt{\frac{m}{k}}
$$

$$
T_{P}=2 \pi \sqrt{\frac{l}{g}}
$$

$$
v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
$$

$$
x(t)=A \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

