Name_____ Physics 110 Quiz #4, April 30, 2010

Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. A mass *m* is dropped from rest from a height *y* acquiring a speed v_{max} . A second identical mass is dropped from rest at a height $\frac{y}{4}$ acquiring a speed *v*. Of the following, which is true?

(a)
$$v = \frac{v_{\text{max}}}{2}$$
 b. $v = \frac{v_{\text{max}}}{\sqrt{2}}$ c. $KE = \frac{KE_{\text{max}}}{16}$ d. $v = 2v_{\text{max}}$

2. Suppose that you are given the system of masses shown on the right in which $m_1 = 1kg$, $m_2 = 3kg$, $\theta = 42^\circ$, $\mu_k = 0.35$ and k = 40 N/m.

a. Using energy ideas, what is the maximum extension of the spring if the surfaces are considered *frictionless* and the blocks are released from rest?

$$\Delta U_{g_1} + \Delta U_{g_2} + \Delta U_s + \Delta K E_1 + \Delta K E_2 = \Delta E_{Total} = 0$$

$$0 + (m_2 g y_f - m_2 g y_i) + (\frac{1}{2} k x_{max}^2 - 0) + 0 + 0 = 0$$

$$-m_2 g x_{max} \sin \theta + \frac{1}{2} k x_{max}^2 = 0$$

$$x_{max} = \frac{2m_2 g \sin \theta}{k} = \frac{2 \times 3kg \times 9.8 \frac{m}{s^2} \sin 42}{40 \frac{M}{m}} = 0.98m$$

b. Using energy ideas, what is the maximum extension of the spring if the surfaces are now considered *to not be frictionless* and the blocks are released from rest?

$$\begin{aligned} \Delta U_{g_1} + \Delta U_{g_2} + \Delta U_S + \Delta K E_1 + \Delta K E_2 &= \Delta E_{Total} = -F_{fr_1} x'_{max} - F_{fr_2} x'_{max} \\ (m_2 g y_f - m_2 g y_i) + (\frac{1}{2} k (x'_{max})^2 - 0) &= -\mu_K m_1 g x'_{max} - \mu_K m_2 g \cos \theta x'_{max} \\ -m_2 g x'_{max} \sin \theta + \frac{1}{2} k (x'_{max})^2 &= -\mu_K m_1 g x'_{max} - \mu_K m_2 g \cos \theta x'_{max} \\ x'_{max} &= \frac{2m_2 g \sin \theta}{k} - \frac{2\mu_K g}{k} (m_1 + m_2 \cos \theta) = 0.54 m \end{aligned}$$

Useful formulas:

Uniform Circular MotionGeometry /Algebra $a_r = \frac{v^2}{r}$ Circles $F_r = ma_r = m\frac{v^2}{r}$ $C = 2\pi r$ $A = \frac{1}{2}bh$ $A = 4\pi r^2$ $v = \frac{2\pi r}{T}$ Quadratic equation : $ax^2 + bx + c = 0$, $F_G = G\frac{m_1m_2}{r^2}$ whose solutions are given by : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Motion in the r = x, y or z-directions $r_{f} = r_{0} + v_{0r}t + \frac{1}{2}a_{r}t^{2}$ $v_{fr} = v_{0r} + a_r t$ $v_{fr}^{2} = v_{0r}^{2} + 2a_{r}\Delta r$

Useful Constants

Vectors

magnitude of avector =
$$\sqrt{v_x^2 + v_y^2}$$

direction of avector $\rightarrow \phi = \tan^{-1} \left(\frac{v_y}{v_x} \right)$

$$g = 9.8 \frac{m}{s^2} \qquad G = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2}$$
$$N_A = 6.02 \times 10^{23} \frac{atoms}{mole} \qquad k_B = 1.38 \times 10^{-23} \frac{J}{K}$$
$$\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4} \qquad v_{sound} = 343 \frac{m}{s}$$

Linear Momentum/Forces	Work/Energy	Heat	
$\vec{p} = \vec{m} \vec{v}$	$K_t = \frac{1}{2}mv^2$		
$\vec{p}_f = \vec{p}_i + \vec{F} \Delta t$	rz 1 r 2	$T_{C} = \frac{5}{9} [T_{F} - 32]$	
J -	$K_r = \frac{1}{2}I\omega^2$	$T_F = \frac{9}{5}T_C + 32$	
$\vec{F} = m\vec{a}$	$U_g = mgh$	$L_{new} = L_{old} \left(1 + \alpha \Delta T \right)$	
$\vec{F_s} = -k\vec{x}$	$U_s = \frac{1}{2}kx^2$	$A_{new} = A_{old} \left(1 + 2\alpha \Delta T \right)$	
$F_{f} = \mu F_{N}$	$W_T = FdCos\theta = \Delta E_T$	$V_{new} = V_{old} (1 + \beta \Delta T): \beta =$	= 3α
$\Gamma_f - \mu \Gamma_N$	1 1	$PV = Nk_BT$	
	$W_{R} = \tau \theta = \Delta E_{R}$ $W_{net} = W_{R} + W_{T} = \Delta E_{R} + \Delta E_{T}$	$\frac{3}{2}k_BT = \frac{1}{2}mv^2$	
	$\Delta E_R + \Delta E_T + \Delta U_g + \Delta U_S = 0$	$\Delta Q = mc\Delta T$	
	$\Delta E_R + \Delta E_T + \Delta U_g + \Delta U_S = -\Delta E$	$P_C = \frac{\Delta Q}{\Delta t} = \frac{kA}{L} \Delta T$	
		$P_{R} = \frac{\Delta Q}{\Delta T} = \varepsilon \sigma A \Delta T^{4}$	
		$\Delta U = \Delta Q - \Delta W$	
Rotational Motion	Fluids S	Simple Harmonic Motion/Waves	
$\theta_f = \theta_i + \omega_i t + \frac{1}{2}\alpha t^2$	$\rho = \frac{M}{V}$	$\omega = 2\pi f = \frac{2\pi}{T}$	
$\omega_f = \omega_i + \alpha t$	' <i>V</i>	\overline{m}	
$\omega^2_f = \omega^2_i + 2\alpha\Delta\theta$	$P = \frac{F}{A}$	$T_s = 2\pi \sqrt{\frac{m}{k}}$	
$\tau = I\alpha = rF$	$P_d = P_0 + \rho g d$	$T_p = 2\pi \sqrt{\frac{l}{g}}$	
$L = I\omega$	$F_{B} = \rho g V$	18	
$L_f = L_i + \tau \Delta t$	$A_1 v_1 = A_2 v_2$	$v = \pm \sqrt{\frac{k}{m}} A \left(1 - \frac{x^2}{A^2} \right)^{\frac{1}{2}}$	
$\Delta s = r\Delta\theta : v = r\omega : a_t = r\alpha$	$\rho_1 A_1 v_1 = \rho_2 A_2 v_2$	$x(t) = A\sin(\frac{2\pi}{T})$	
$a_r = r\omega^2$	$P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$	$x(t) = \operatorname{Asin}\left(\frac{1}{t}\right)$	

Sound

 $a_r = r\omega^2$

$$v = f\lambda = (331 + 0.6T)\frac{m}{s}$$

$$\beta = 10\log\frac{I}{I_0}; \quad I_o = 1 \times 10^{-12} \frac{w}{m^2}$$

$$f_n = nf_1 = n\frac{v}{2L}; \quad f_n = nf_1 = n\frac{v}{4L}$$

$$f_n = nf_1 = n\frac{v}{2L}$$
$$I = 2\pi^2 f^2 \rho v A^2$$

 $v = f\lambda = \sqrt{\frac{F_T}{\mu}}$

 $v(t) = A_{\sqrt{\frac{k}{m}}} \cos\left(\frac{2\pi t}{T}\right)$

 $a(t) = -A\frac{k}{m}\sin\left(\frac{2\pi t}{T}\right)$